Non-spatial Dynamics and Spatiotemporal Patterns Formation in a Predator-Prey Model with Double Allee and Dome-shaped Response Function.

IF 2 4区 数学 Q2 BIOLOGY
Debjit Pal, Ritwika Mondal, Dipak Kesh, Debasis Mukherjee
{"title":"Non-spatial Dynamics and Spatiotemporal Patterns Formation in a Predator-Prey Model with Double Allee and Dome-shaped Response Function.","authors":"Debjit Pal, Ritwika Mondal, Dipak Kesh, Debasis Mukherjee","doi":"10.1007/s11538-025-01411-7","DOIUrl":null,"url":null,"abstract":"<p><p>The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently. The cooperative behavior which raises Allee effect in low population density, can create group defence in species to protect themselves from predation. This article focuses on the dynamics of a predator-prey system with double Allee effect in prey growth and simplified Monod-Haldane form of dome-shaped response function to incorporate group defence ability of prey as time and space vary. The study obtains that, to some extent, group defence of prey plays a positive role for the stability of both the species, but on negative side, if defensive ability exceeds a threshold value then both the population can not survive simultaneously and predator population dies out. The Allee effect produces bi-stability (weak Allee) even tri-stability (strong Allee) in phase space reflecting that the system dynamics is very sensitive subject to initial population of the species. The combined impact of double Allee and group defence of prey leads in populations enduring stable periods punctuated by oscillations. The species' mobility based on only its own population is insufficient to this model for Turing instability. The presence of double Allee effect increases the instability regions that enhances the likelihood of various patterns. Whereas increasing group defence of prey decreases the instability region in spatial system. The species distribution stabilizes in forms of spots, stripes and mixture of both in heterogeneous environment. But for prey, gathering decreases with increasing growth rate and gathering increases with increasing Allee effect due to cross-diffusion which results paradox to temporal system. In contrast, populations in the Hopf and Hopf-Turing regions fluctuate (oscillatory) or their distribution becomes unpredictable (chaotic).</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 2","pages":"35"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-025-01411-7","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The extinction of species is a major threat to the biodiversity. Allee effects are strongly linked to population extinction vulnerability. Emerging ecological evidence from numerous ecosystems reveals that the Allee effect, which is brought on by two or more processes, can work on a single species concurrently. The cooperative behavior which raises Allee effect in low population density, can create group defence in species to protect themselves from predation. This article focuses on the dynamics of a predator-prey system with double Allee effect in prey growth and simplified Monod-Haldane form of dome-shaped response function to incorporate group defence ability of prey as time and space vary. The study obtains that, to some extent, group defence of prey plays a positive role for the stability of both the species, but on negative side, if defensive ability exceeds a threshold value then both the population can not survive simultaneously and predator population dies out. The Allee effect produces bi-stability (weak Allee) even tri-stability (strong Allee) in phase space reflecting that the system dynamics is very sensitive subject to initial population of the species. The combined impact of double Allee and group defence of prey leads in populations enduring stable periods punctuated by oscillations. The species' mobility based on only its own population is insufficient to this model for Turing instability. The presence of double Allee effect increases the instability regions that enhances the likelihood of various patterns. Whereas increasing group defence of prey decreases the instability region in spatial system. The species distribution stabilizes in forms of spots, stripes and mixture of both in heterogeneous environment. But for prey, gathering decreases with increasing growth rate and gathering increases with increasing Allee effect due to cross-diffusion which results paradox to temporal system. In contrast, populations in the Hopf and Hopf-Turing regions fluctuate (oscillatory) or their distribution becomes unpredictable (chaotic).

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
8.60%
发文量
123
审稿时长
7.5 months
期刊介绍: The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including: Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations Research in mathematical biology education Reviews Commentaries Perspectives, and contributions that discuss issues important to the profession All contributions are peer-reviewed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信