Matthew J Penn, Neil Scheidwasser, Christl A Donnelly, David A Duchêne, Samir Bhatt
{"title":"Bayesian Inference of Phylogenetic Distances: Revisiting the Eigenvalue Approach.","authors":"Matthew J Penn, Neil Scheidwasser, Christl A Donnelly, David A Duchêne, Samir Bhatt","doi":"10.1007/s11538-024-01403-z","DOIUrl":null,"url":null,"abstract":"<p><p>Using genetic data to infer evolutionary distances between molecular sequence pairs based on a Markov substitution model is a common procedure in phylogenetics, in particular for selecting a good starting tree to improve upon. Many evolutionary patterns can be accurately modelled using substitution models that are available in closed form, including the popular general time reversible model (GTR) for DNA data. For more complex biological phenomena, such as variations in lineage-specific evolutionary rates over time (heterotachy), other approaches such as the GTR with rate variation (GTR <math><mrow><mo>+</mo> <mi>Γ</mi></mrow> </math> ) are required, but do not admit analytical solutions and do not automatically allow for likelihood calculations crucial for Bayesian analysis. In this paper, we derive a hybrid approach between these two methods, incorporating <math><mrow><mi>Γ</mi> <mo>(</mo> <mi>α</mi> <mo>,</mo> <mi>α</mi> <mo>)</mo></mrow> </math> -distributed rate variation and heterotachy into a hierarchical Bayesian GTR-style framework. Our approach is differentiable and amenable to both stochastic gradient descent for optimisation and Hamiltonian Markov chain Monte Carlo for Bayesian inference. We show the utility of our approach by studying hypotheses regarding the origins of the eukaryotic cell within the context of a universal tree of life and find evidence for a two-domain theory.</p>","PeriodicalId":9372,"journal":{"name":"Bulletin of Mathematical Biology","volume":"87 2","pages":"32"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759294/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Biology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11538-024-01403-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Using genetic data to infer evolutionary distances between molecular sequence pairs based on a Markov substitution model is a common procedure in phylogenetics, in particular for selecting a good starting tree to improve upon. Many evolutionary patterns can be accurately modelled using substitution models that are available in closed form, including the popular general time reversible model (GTR) for DNA data. For more complex biological phenomena, such as variations in lineage-specific evolutionary rates over time (heterotachy), other approaches such as the GTR with rate variation (GTR ) are required, but do not admit analytical solutions and do not automatically allow for likelihood calculations crucial for Bayesian analysis. In this paper, we derive a hybrid approach between these two methods, incorporating -distributed rate variation and heterotachy into a hierarchical Bayesian GTR-style framework. Our approach is differentiable and amenable to both stochastic gradient descent for optimisation and Hamiltonian Markov chain Monte Carlo for Bayesian inference. We show the utility of our approach by studying hypotheses regarding the origins of the eukaryotic cell within the context of a universal tree of life and find evidence for a two-domain theory.
期刊介绍:
The Bulletin of Mathematical Biology, the official journal of the Society for Mathematical Biology, disseminates original research findings and other information relevant to the interface of biology and the mathematical sciences. Contributions should have relevance to both fields. In order to accommodate the broad scope of new developments, the journal accepts a variety of contributions, including:
Original research articles focused on new biological insights gained with the help of tools from the mathematical sciences or new mathematical tools and methods with demonstrated applicability to biological investigations
Research in mathematical biology education
Reviews
Commentaries
Perspectives, and contributions that discuss issues important to the profession
All contributions are peer-reviewed.