Yasin Altinisik, Roy S Hessels, Caspar J Van Lissa, Rebecca M Kuiper
{"title":"An AIC-type information criterion evaluating theory-based hypotheses for contingency tables.","authors":"Yasin Altinisik, Roy S Hessels, Caspar J Van Lissa, Rebecca M Kuiper","doi":"10.3758/s13428-024-02570-6","DOIUrl":null,"url":null,"abstract":"<p><p>Researchers face inevitable difficulties when evaluating theory-based hypotheses in the context of contingency tables. Log-linear models are often insufficient to evaluate such hypotheses, as they do not provide enough information on complex relationships between cell probabilities in many real-life applications. These models are usually used to evaluate the relationships between variables using only equality restrictions between model parameters, while specifying theory-based hypotheses often also requires inequality restrictions. Moreover, high-dimensional contingency tables generally contain low cell counts and/or empty cells, complicating parameter estimation in log-linear models. The presence of many parameters in these models also causes difficulties in interpretation when evaluating the hypotheses of interest. This study proposes a method that simplifies evaluating theory-based hypotheses for high-dimensional contingency tables by simultaneously addressing each of the above problems. With this method, theory-based hypotheses, which are specified using equality and/or inequality constraints with respect to (functions of) cell probabilities, are evaluated using an AIC-type information criterion, GORICA. We conduct a simulation study to evaluate the performance of GORICA in the context of contingency tables. Two empirical examples illustrate the use of the method.</p>","PeriodicalId":8717,"journal":{"name":"Behavior Research Methods","volume":"57 2","pages":"70"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11754365/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavior Research Methods","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.3758/s13428-024-02570-6","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHOLOGY, EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Researchers face inevitable difficulties when evaluating theory-based hypotheses in the context of contingency tables. Log-linear models are often insufficient to evaluate such hypotheses, as they do not provide enough information on complex relationships between cell probabilities in many real-life applications. These models are usually used to evaluate the relationships between variables using only equality restrictions between model parameters, while specifying theory-based hypotheses often also requires inequality restrictions. Moreover, high-dimensional contingency tables generally contain low cell counts and/or empty cells, complicating parameter estimation in log-linear models. The presence of many parameters in these models also causes difficulties in interpretation when evaluating the hypotheses of interest. This study proposes a method that simplifies evaluating theory-based hypotheses for high-dimensional contingency tables by simultaneously addressing each of the above problems. With this method, theory-based hypotheses, which are specified using equality and/or inequality constraints with respect to (functions of) cell probabilities, are evaluated using an AIC-type information criterion, GORICA. We conduct a simulation study to evaluate the performance of GORICA in the context of contingency tables. Two empirical examples illustrate the use of the method.
期刊介绍:
Behavior Research Methods publishes articles concerned with the methods, techniques, and instrumentation of research in experimental psychology. The journal focuses particularly on the use of computer technology in psychological research. An annual special issue is devoted to this field.