Improved ChIP Sequencing for H3K27ac Profiling and Super-Enhancer Analysis Assisted by Fluorescence-Activated Sorting of Formalin-Fixed Paraffin-Embedded Tissues.

IF 3.7 3区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Nenggang Jiang, Zhihao Wen, Huan Tao, Hongyan Liao
{"title":"Improved ChIP Sequencing for H3K27ac Profiling and Super-Enhancer Analysis Assisted by Fluorescence-Activated Sorting of Formalin-Fixed Paraffin-Embedded Tissues.","authors":"Nenggang Jiang, Zhihao Wen, Huan Tao, Hongyan Liao","doi":"10.1186/s12575-025-00262-9","DOIUrl":null,"url":null,"abstract":"<p><p>Archived clinical formalin-fixed paraffin-embedded tissue (FFPE) is valuable for the study of tumor epigenetics. Although protocol of chromatin immunoprecipitation coupled with next generation sequencing (NGS) (ChIP-seq) using FFPE samples has been established, removal of interference signals from non-target cell components in the samples is still needed. In this study, the protocol of ChIP-seq with purified cells from FFPE lymphoid tissue of nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI) after fluorescence-activated cell sorting (FACS) was established and optimized. Essential steps included single cell preparation, heat treatment enhancing antigen retrieval and labeling, cell sorting, chromatin shearing, ChIP and NGS. Through assistance of FACS, we successfully isolated tumor cells from FFPE lymph node samples of nTFHL-AI and profiled super-enhancers (SEs) mapping by enrichment of H3K27ac signals. The data indicated that the SEs mapping of the sorted cells was different from that of the entire unsorted tissue sample. The H3K27ac signals with cell lineage specificity from background cell components were successfully removed, and the remaining SEs mapping was more similar to T follicular helper cell in an unsupervised clustering analysis, rather than the primary tissue. In addition, we also evaluated the protocol using cultured pure cell lines, and the results indicated that the sequencing data obtained through this protocol had high fidelity and reproducibility. These results show that ChIP-seq for H3K27ac profiling and SEs mapping assisted by FACS with pathological FFPE tissue is available for research of histone modification. Precise epigenetic characteristics of the tumor cell can be described with this protocol.</p>","PeriodicalId":8960,"journal":{"name":"Biological Procedures Online","volume":"27 1","pages":"1"},"PeriodicalIF":3.7000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11753037/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biological Procedures Online","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12575-025-00262-9","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Archived clinical formalin-fixed paraffin-embedded tissue (FFPE) is valuable for the study of tumor epigenetics. Although protocol of chromatin immunoprecipitation coupled with next generation sequencing (NGS) (ChIP-seq) using FFPE samples has been established, removal of interference signals from non-target cell components in the samples is still needed. In this study, the protocol of ChIP-seq with purified cells from FFPE lymphoid tissue of nodal T follicular helper cell lymphoma, angioimmunoblastic type (nTFHL-AI) after fluorescence-activated cell sorting (FACS) was established and optimized. Essential steps included single cell preparation, heat treatment enhancing antigen retrieval and labeling, cell sorting, chromatin shearing, ChIP and NGS. Through assistance of FACS, we successfully isolated tumor cells from FFPE lymph node samples of nTFHL-AI and profiled super-enhancers (SEs) mapping by enrichment of H3K27ac signals. The data indicated that the SEs mapping of the sorted cells was different from that of the entire unsorted tissue sample. The H3K27ac signals with cell lineage specificity from background cell components were successfully removed, and the remaining SEs mapping was more similar to T follicular helper cell in an unsupervised clustering analysis, rather than the primary tissue. In addition, we also evaluated the protocol using cultured pure cell lines, and the results indicated that the sequencing data obtained through this protocol had high fidelity and reproducibility. These results show that ChIP-seq for H3K27ac profiling and SEs mapping assisted by FACS with pathological FFPE tissue is available for research of histone modification. Precise epigenetic characteristics of the tumor cell can be described with this protocol.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biological Procedures Online
Biological Procedures Online 生物-生化研究方法
CiteScore
10.50
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: iological Procedures Online publishes articles that improve access to techniques and methods in the medical and biological sciences. We are also interested in short but important research discoveries, such as new animal disease models. Topics of interest include, but are not limited to: Reports of new research techniques and applications of existing techniques Technical analyses of research techniques and published reports Validity analyses of research methods and approaches to judging the validity of research reports Application of common research methods Reviews of existing techniques Novel/important product information Biological Procedures Online places emphasis on multidisciplinary approaches that integrate methodologies from medicine, biology, chemistry, imaging, engineering, bioinformatics, computer science, and systems analysis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信