Infarct core segmentation using U-Net in CT perfusion imaging: a feasibility study.

IF 1.1 4区 医学 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Ching-Ching Yang, Shih-Sheng Chen
{"title":"Infarct core segmentation using U-Net in CT perfusion imaging: a feasibility study.","authors":"Ching-Ching Yang, Shih-Sheng Chen","doi":"10.1177/02841851241305736","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The wide variability in thresholds on computed tomography (CT) perfusion parametric maps has led to controversy in the stroke imaging community about the most accurate measurement of core infarction.</p><p><strong>Purpose: </strong>To investigate the feasibility of using U-Net to perform infarct core segmentation in CT perfusion imaging.</p><p><strong>Material and methods: </strong>CT perfusion parametric maps were the input of U-Net, while the ground truth segmentation was determined based on diffusion-weighted imaging (DWI). The dataset used in this study was from the ISLES2018 challenge, which contains 63 acute stroke patients receiving CT perfusion imaging and DWI within 8 h of stroke onset. The segmentation accuracy of model outputs was assessed by calculating Dice similarity coefficient (DSC), sensitivity, and intersection over union (IoU).</p><p><strong>Results: </strong>The highest DSC was observed in U-Net taking mean transit time (MTT) or time-to-maximum (Tmax) as input. Meanwhile, the highest sensitivity and IoU were observed in U-Net taking Tmax as input. A DSC in the range of 0.2-0.4 was found in U-Net taking Tmax as input when the infarct area contains < 1000 pixels. A DSC of 0.4-0.6 was found in U-Net taking Tmax as input when the infarct area contains 1000-1999 pixels. A DSC value of 0.6-0.8 was found in U-Net taking Tmax as input when the infarct area contains ≥ 2000 pixels.</p><p><strong>Conclusion: </strong>Our model achieved good performance for infarct area containing ≥ 2000 pixels, so it may assist in identifying patients who are contraindicated for intravenous thrombolysis.</p>","PeriodicalId":7143,"journal":{"name":"Acta radiologica","volume":" ","pages":"2841851241305736"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta radiologica","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/02841851241305736","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Background: The wide variability in thresholds on computed tomography (CT) perfusion parametric maps has led to controversy in the stroke imaging community about the most accurate measurement of core infarction.

Purpose: To investigate the feasibility of using U-Net to perform infarct core segmentation in CT perfusion imaging.

Material and methods: CT perfusion parametric maps were the input of U-Net, while the ground truth segmentation was determined based on diffusion-weighted imaging (DWI). The dataset used in this study was from the ISLES2018 challenge, which contains 63 acute stroke patients receiving CT perfusion imaging and DWI within 8 h of stroke onset. The segmentation accuracy of model outputs was assessed by calculating Dice similarity coefficient (DSC), sensitivity, and intersection over union (IoU).

Results: The highest DSC was observed in U-Net taking mean transit time (MTT) or time-to-maximum (Tmax) as input. Meanwhile, the highest sensitivity and IoU were observed in U-Net taking Tmax as input. A DSC in the range of 0.2-0.4 was found in U-Net taking Tmax as input when the infarct area contains < 1000 pixels. A DSC of 0.4-0.6 was found in U-Net taking Tmax as input when the infarct area contains 1000-1999 pixels. A DSC value of 0.6-0.8 was found in U-Net taking Tmax as input when the infarct area contains ≥ 2000 pixels.

Conclusion: Our model achieved good performance for infarct area containing ≥ 2000 pixels, so it may assist in identifying patients who are contraindicated for intravenous thrombolysis.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta radiologica
Acta radiologica 医学-核医学
CiteScore
2.70
自引率
0.00%
发文量
170
审稿时长
3-8 weeks
期刊介绍: Acta Radiologica publishes articles on all aspects of radiology, from clinical radiology to experimental work. It is known for articles based on experimental work and contrast media research, giving priority to scientific original papers. The distinguished international editorial board also invite review articles, short communications and technical and instrumental notes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信