Synthesis and characterization of corn starch esters obtained in oleic acid/L(+)-tartaric acid medium.

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Carbohydrate Polymers Pub Date : 2025-03-15 Epub Date: 2025-01-08 DOI:10.1016/j.carbpol.2025.123249
Diego E Boldrini
{"title":"Synthesis and characterization of corn starch esters obtained in oleic acid/L(+)-tartaric acid medium.","authors":"Diego E Boldrini","doi":"10.1016/j.carbpol.2025.123249","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, corn starch esters were obtained by a novel methodology using oleic acid as an esterifying agent and L(+)-tartaric acid as both catalyst and esterifying agent. The degree of substitution (DS) was determined along the reaction time to control the level of substitution achieved (up to 0.33), while all the other reaction parameters were maintained constant. Several techniques were applied to characterize the starch esters obtained, namely, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential scanning calorimetry (DSC), proton nuclear magnetic resonance spectroscopy (H NMR), polarized light microscopy, and X-ray diffraction (XRD). The incorporation of ester groups causes a gradual decrease in the crystallinity and thermal stability of the substituted starches. The hydrophobicity of the samples increases significantly as a function of the DS obtained. <sup>1</sup>H NMR analysis and solubility in dimethylsulfoxide (DMSO) indicate that the L(+)-tartaric acid is involved as a catalyst and an esterifying agent that crosslinks starch chains. The materials obtained are promising for use in various applications such as emulsifiers, surface coating materials, flavoring agents in the food industry, and biomedical applications for bone fixation and replacements, among others, meriting future studies.</p>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"123249"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carbpol.2025.123249","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this study, corn starch esters were obtained by a novel methodology using oleic acid as an esterifying agent and L(+)-tartaric acid as both catalyst and esterifying agent. The degree of substitution (DS) was determined along the reaction time to control the level of substitution achieved (up to 0.33), while all the other reaction parameters were maintained constant. Several techniques were applied to characterize the starch esters obtained, namely, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential thermogravimetry (DTG), differential scanning calorimetry (DSC), proton nuclear magnetic resonance spectroscopy (H NMR), polarized light microscopy, and X-ray diffraction (XRD). The incorporation of ester groups causes a gradual decrease in the crystallinity and thermal stability of the substituted starches. The hydrophobicity of the samples increases significantly as a function of the DS obtained. 1H NMR analysis and solubility in dimethylsulfoxide (DMSO) indicate that the L(+)-tartaric acid is involved as a catalyst and an esterifying agent that crosslinks starch chains. The materials obtained are promising for use in various applications such as emulsifiers, surface coating materials, flavoring agents in the food industry, and biomedical applications for bone fixation and replacements, among others, meriting future studies.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信