Alteration of the Catalytic Properties of the Epoxyalcohol Synthase CYP443D1 (NvEAS) of the Starlet Sea Anemone Nematostella vectensis as a Result of a Single Amino Acid Substitution.

IF 0.8 4区 生物学 Q4 BIOCHEMISTRY & MOLECULAR BIOLOGY
S S Gorina, N V Lantsova, Y Y Toporkova, A N Grechkin
{"title":"Alteration of the Catalytic Properties of the Epoxyalcohol Synthase CYP443D1 (NvEAS) of the Starlet Sea Anemone Nematostella vectensis as a Result of a Single Amino Acid Substitution.","authors":"S S Gorina, N V Lantsova, Y Y Toporkova, A N Grechkin","doi":"10.1134/S160767292460057X","DOIUrl":null,"url":null,"abstract":"<p><p>Cytochromes of the P450 superfamily are widespread in nature; they were found in all studied aerobic organisms. Although the degree of similarity between cytochromes P450 of different families is low, all enzymes of this superfamily have similar tertiary structures. In addition, all cytochromes P450, including enzymes of the CYP74 clan, contain substrate recognition sites in their sequences, which form the catalytic center. Initially, CYP74 enzymes were discovered in plants, where they are widespread and play an important role in the lipoxygenase cascade. Later, CYP74-like enzymes of other families were identified in different taxa, including animals. Based on the results of phylogenetic studies, structures, and catalytic mechanisms, they were combined along with the CYP74 family into the CYP74 clan. One of the CYP74 clan enzymes is the epoxyalcohol synthase NvEAS (CYP443D1) of the starlet sea anemone Nematostella vectensis. A mutant form of NvEAS with a P93G substitution, that acquired additional hydroperoxide lyase activity, was obtained by site-directed mutagenesis. Before this work, only the results of site-directed mutagenesis of enzymes of the CYP74 family, but not of the CYP74 clan, were described. Moreover, in this work, the transformation of epoxyalcohol synthase into hydroperoxide lyase is described for the first time. These results confirm the previously stated assumption about the evolution of CYP74 enzymes, namely the epoxyalcohol synthase - hydroperoxide lyase - allene oxide synthase - divinyl ether synthase pathway.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":" ","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1134/S160767292460057X","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Cytochromes of the P450 superfamily are widespread in nature; they were found in all studied aerobic organisms. Although the degree of similarity between cytochromes P450 of different families is low, all enzymes of this superfamily have similar tertiary structures. In addition, all cytochromes P450, including enzymes of the CYP74 clan, contain substrate recognition sites in their sequences, which form the catalytic center. Initially, CYP74 enzymes were discovered in plants, where they are widespread and play an important role in the lipoxygenase cascade. Later, CYP74-like enzymes of other families were identified in different taxa, including animals. Based on the results of phylogenetic studies, structures, and catalytic mechanisms, they were combined along with the CYP74 family into the CYP74 clan. One of the CYP74 clan enzymes is the epoxyalcohol synthase NvEAS (CYP443D1) of the starlet sea anemone Nematostella vectensis. A mutant form of NvEAS with a P93G substitution, that acquired additional hydroperoxide lyase activity, was obtained by site-directed mutagenesis. Before this work, only the results of site-directed mutagenesis of enzymes of the CYP74 family, but not of the CYP74 clan, were described. Moreover, in this work, the transformation of epoxyalcohol synthase into hydroperoxide lyase is described for the first time. These results confirm the previously stated assumption about the evolution of CYP74 enzymes, namely the epoxyalcohol synthase - hydroperoxide lyase - allene oxide synthase - divinyl ether synthase pathway.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Doklady Biochemistry and Biophysics
Doklady Biochemistry and Biophysics 生物-生化与分子生物学
CiteScore
1.60
自引率
12.50%
发文量
68
审稿时长
6-12 weeks
期刊介绍: Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信