Laura R K Niemelä, András Pásztor, Alexander D Frey
{"title":"Generation of ribosomal protein S1 mutants for improving of expression of difficult to translate mRNAs.","authors":"Laura R K Niemelä, András Pásztor, Alexander D Frey","doi":"10.1007/s00253-025-13406-4","DOIUrl":null,"url":null,"abstract":"<p><p>Metagenomes present a source for novel enzymes, but under 1% of environmental microbes are cultivatable. Because of its useful properties, Escherichia coli has been used as a host organism in functional genomic screens. However, due to differing expression machineries in the expression host compared to the source organism of the DNA sequences, screening outcomes can be biased. Here, we focused on one of the limiting processes-translation initiation. To that end, we created an operon-like screening system in E. coli to select mutants of the ribosomal protein S1 with more relaxed sequence requirements for 5'-untranslated regions of mRNAs. We created two mutation libraries of the ribosomal protein S1, one covering domains 3 and 4 (D3-D4) and the second covering domains 3 to 5 (D3-D5). Most mutants from library D3-D4 proofed to be specific for a particular UTR sequence and improved only expression from a single construct. Only mutant 3 from library D3-D4 led to increased expression of four different reporters improving fluorescence levels by up to 21%. Mutants isolated from D3-D5 library led up to 90% higher expression compared to the control, though the mutants with highest improvements exhibited a specialist phenotype. The most promising mutant, mutant 4, exhibited a generalist phenotype and showed increased expression in all six reporter strains compared to the control. This could indicate the potential for a more promiscuous translation initiation of metagenomic sequences in E. coli although at the price of smaller increases compared to specialist mutants. KEY POINTS: • An operon-like selection system allowed to isolate generalist and specialist S1 mutants. • S1 mutants improved translation of mRNAs with 5'-UTRs from metagenomic sequences. • Use of S1 mutants could increase coverage from metagenomic libraries in functional screens.</p>","PeriodicalId":8342,"journal":{"name":"Applied Microbiology and Biotechnology","volume":"109 1","pages":"20"},"PeriodicalIF":3.9000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11759276/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Microbiology and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s00253-025-13406-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Metagenomes present a source for novel enzymes, but under 1% of environmental microbes are cultivatable. Because of its useful properties, Escherichia coli has been used as a host organism in functional genomic screens. However, due to differing expression machineries in the expression host compared to the source organism of the DNA sequences, screening outcomes can be biased. Here, we focused on one of the limiting processes-translation initiation. To that end, we created an operon-like screening system in E. coli to select mutants of the ribosomal protein S1 with more relaxed sequence requirements for 5'-untranslated regions of mRNAs. We created two mutation libraries of the ribosomal protein S1, one covering domains 3 and 4 (D3-D4) and the second covering domains 3 to 5 (D3-D5). Most mutants from library D3-D4 proofed to be specific for a particular UTR sequence and improved only expression from a single construct. Only mutant 3 from library D3-D4 led to increased expression of four different reporters improving fluorescence levels by up to 21%. Mutants isolated from D3-D5 library led up to 90% higher expression compared to the control, though the mutants with highest improvements exhibited a specialist phenotype. The most promising mutant, mutant 4, exhibited a generalist phenotype and showed increased expression in all six reporter strains compared to the control. This could indicate the potential for a more promiscuous translation initiation of metagenomic sequences in E. coli although at the price of smaller increases compared to specialist mutants. KEY POINTS: • An operon-like selection system allowed to isolate generalist and specialist S1 mutants. • S1 mutants improved translation of mRNAs with 5'-UTRs from metagenomic sequences. • Use of S1 mutants could increase coverage from metagenomic libraries in functional screens.
期刊介绍:
Applied Microbiology and Biotechnology focusses on prokaryotic or eukaryotic cells, relevant enzymes and proteins; applied genetics and molecular biotechnology; genomics and proteomics; applied microbial and cell physiology; environmental biotechnology; process and products and more. The journal welcomes full-length papers and mini-reviews of new and emerging products, processes and technologies.