Ana Paula Vanin, Marli Camassola, Erika Eiser, Bjørn Torger Stokke
{"title":"Characterization of the polysaccharide schizophyllan and schizophyllan-chitosan hydrogel formation by diffusing-wave spectroscopy.","authors":"Ana Paula Vanin, Marli Camassola, Erika Eiser, Bjørn Torger Stokke","doi":"10.1016/j.carbpol.2024.123168","DOIUrl":null,"url":null,"abstract":"<p><p>Schizophyllan (SPG) is a semi-flexible, triple-helical polysaccharide with attractive properties as an efficient viscosifying compound and biological response modifier. We report microrheological characterization of schizophyllan as dispersed in solution and the changes associated when crosslinked with chitosan over an extended frequency range using diffusing wave spectroscopy (DWS). A SPG with high molecular weight (M<sub>w</sub> = 1.1 × 10<sup>6</sup> Da) was selectively oxidized in the side chains (20 % or 40 %) to promote Schiff base formation with chitosan (CHI) amine groups, thus inducing crosslinking. The microrheological characterization of the dispersed SPG revealed characteristic features of the semiflexible structure, where also coupling between flexure and longitudinal modes was indicated based on scaling coefficient close to 7/8 of the loss modulus G\"(ω) vs ω for ω in the range 3 × 10<sup>3</sup>-10<sup>5</sup> rad/s. The in-situ characterization of the gelation process by DWS revealed changes in the scattered intensity-correlation function caused by the embedded colloidal probe-particles, from which the mean-square displacement of the probes and the shear moduli of the SPG-chitosan hydrogel samples were determined for various SPG concentrations and degrees of oxidation. It is found that SPG - chitosan hydrogels can be prepared with a polymer content in the range of 0.5-2.0 mg/mL and that tuning the molecular parameters allowed control of mechanical moduli in soft hydrogels in the range of 0.3 Pa up to 1000 Pa.</p>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"123168"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carbpol.2024.123168","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/17 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Schizophyllan (SPG) is a semi-flexible, triple-helical polysaccharide with attractive properties as an efficient viscosifying compound and biological response modifier. We report microrheological characterization of schizophyllan as dispersed in solution and the changes associated when crosslinked with chitosan over an extended frequency range using diffusing wave spectroscopy (DWS). A SPG with high molecular weight (Mw = 1.1 × 106 Da) was selectively oxidized in the side chains (20 % or 40 %) to promote Schiff base formation with chitosan (CHI) amine groups, thus inducing crosslinking. The microrheological characterization of the dispersed SPG revealed characteristic features of the semiflexible structure, where also coupling between flexure and longitudinal modes was indicated based on scaling coefficient close to 7/8 of the loss modulus G"(ω) vs ω for ω in the range 3 × 103-105 rad/s. The in-situ characterization of the gelation process by DWS revealed changes in the scattered intensity-correlation function caused by the embedded colloidal probe-particles, from which the mean-square displacement of the probes and the shear moduli of the SPG-chitosan hydrogel samples were determined for various SPG concentrations and degrees of oxidation. It is found that SPG - chitosan hydrogels can be prepared with a polymer content in the range of 0.5-2.0 mg/mL and that tuning the molecular parameters allowed control of mechanical moduli in soft hydrogels in the range of 0.3 Pa up to 1000 Pa.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.