Bimetallic metal-organic frameworks as electrode modifiers for enhanced electrochemical sensing of chloramphenicol.

IF 5.3 2区 化学 Q1 CHEMISTRY, ANALYTICAL
Jiazhen Tang, Jiawei Chen, Ruijie Xu, Junhui Xu, Xiaolun Peng, Yazhen Wang
{"title":"Bimetallic metal-organic frameworks as electrode modifiers for enhanced electrochemical sensing of chloramphenicol.","authors":"Jiazhen Tang, Jiawei Chen, Ruijie Xu, Junhui Xu, Xiaolun Peng, Yazhen Wang","doi":"10.1007/s00604-024-06930-z","DOIUrl":null,"url":null,"abstract":"<p><p>An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with  their monometallic counterparts due to the strong synergistic effect between bimetals. Inspired by these results, the MIL-101(Fe/Co)-based sensor was used to detect CAP. Some experiment parameters of pH, Fe and Co molar ratio, MIL-101(Fe/Co) volume, and DPV quiet time were optimized. The direct reduction mechanism of CAP was verified to involve four electrons and four protons process. Finally, the sensitive and selective CAP detection in the concentration range 1 to 200 μM with a detection limit of 0.3 μM was realized by the proposed sensor. The satisfactory recoveries in tap water and lake water indicated the practicability of the proposed electrochemical sensor. It is expected that this work may open up a paradigm for the preparation of MOF-based electrode modifiers with desired electrocatalytic performance for environmental pollution monitoring.</p>","PeriodicalId":705,"journal":{"name":"Microchimica Acta","volume":"192 2","pages":"104"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microchimica Acta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00604-024-06930-z","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

An electrochemical sensor is presented for the detection of the chloramphenicol (CAP) based on a bimetallic MIL-101(Fe/Co) MOF electrocatalyst. The MIL-101(Fe/Co) was prepared by utilizing mixed-valence Fe (III) and Co (II) as metal nodes and terephthalic acid as ligands with a simple hydrothermal method and characterized by SEM, TEM, XRD, FTIR, and XPS. Electrochemical measurements such as electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), and differential pulse voltammetry (DPV) showed that bimetallic MIL-101(Fe/Co) had the faster electron transfer, larger electroactive area, and higher electrocatalytic activity compared with  their monometallic counterparts due to the strong synergistic effect between bimetals. Inspired by these results, the MIL-101(Fe/Co)-based sensor was used to detect CAP. Some experiment parameters of pH, Fe and Co molar ratio, MIL-101(Fe/Co) volume, and DPV quiet time were optimized. The direct reduction mechanism of CAP was verified to involve four electrons and four protons process. Finally, the sensitive and selective CAP detection in the concentration range 1 to 200 μM with a detection limit of 0.3 μM was realized by the proposed sensor. The satisfactory recoveries in tap water and lake water indicated the practicability of the proposed electrochemical sensor. It is expected that this work may open up a paradigm for the preparation of MOF-based electrode modifiers with desired electrocatalytic performance for environmental pollution monitoring.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microchimica Acta
Microchimica Acta 化学-分析化学
CiteScore
9.80
自引率
5.30%
发文量
410
审稿时长
2.7 months
期刊介绍: As a peer-reviewed journal for analytical sciences and technologies on the micro- and nanoscale, Microchimica Acta has established itself as a premier forum for truly novel approaches in chemical and biochemical analysis. Coverage includes methods and devices that provide expedient solutions to the most contemporary demands in this area. Examples are point-of-care technologies, wearable (bio)sensors, in-vivo-monitoring, micro/nanomotors and materials based on synthetic biology as well as biomedical imaging and targeting.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信