Konjac glucomannan-based foams incorporating cellulose phase change microcapsules for efficient thermal energy regulation

IF 10.7 1区 化学 Q1 CHEMISTRY, APPLIED
Pengpeng Deng , Xinping Liu , Ting Zhang , Yuewen Li , Kao Wu , Kai Chen , Ying Kuang , Juanjuan Chen , Fatang Jiang
{"title":"Konjac glucomannan-based foams incorporating cellulose phase change microcapsules for efficient thermal energy regulation","authors":"Pengpeng Deng ,&nbsp;Xinping Liu ,&nbsp;Ting Zhang ,&nbsp;Yuewen Li ,&nbsp;Kao Wu ,&nbsp;Kai Chen ,&nbsp;Ying Kuang ,&nbsp;Juanjuan Chen ,&nbsp;Fatang Jiang","doi":"10.1016/j.carbpol.2024.123191","DOIUrl":null,"url":null,"abstract":"<div><div>Biomass foam with porous structure has broad application prospects in thermal energy management. However, traditional foams can only passively insulate heat, unable to effectively store thermal energy and prolong the insulation time. In this work, microcapsules rich in paraffin were prepared using the Pickering emulsion template method with phosphorylated cellulose nanocrystals (CNC) as an emulsifier. Phase change microcapsules were combined with konjac glucomannan (KGM) foam to prepare thermal energy management materials with excellent thermal insulation and storage properties. The synergistic interaction between CNC and KGM molecules could form the hydrogen bond cross-linking network to further improve the water resistance and mechanical properties of foams. The encapsulation of CNC microcapsules and the capillary action of KGM foam could effectively inhibit paraffin leakage in the KGM/CNC/paraffin (KCP) foams. Moreover, the enthalpy of melting and crystallization of KCP-8 foam was 144.9 J/g and 141.3 J/g, respectively. The thermal conductivity and infrared thermal imaging results showed that KCP-8 foams exhibited excellent thermal insulation and heat storage properties. This study provides ideas for the design and preparation of porous foams with thermal regulation properties, which has great potential in the field of intelligent textile and building energy conservation.</div></div>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"Article 123191"},"PeriodicalIF":10.7000,"publicationDate":"2024-12-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0144861724014176","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Biomass foam with porous structure has broad application prospects in thermal energy management. However, traditional foams can only passively insulate heat, unable to effectively store thermal energy and prolong the insulation time. In this work, microcapsules rich in paraffin were prepared using the Pickering emulsion template method with phosphorylated cellulose nanocrystals (CNC) as an emulsifier. Phase change microcapsules were combined with konjac glucomannan (KGM) foam to prepare thermal energy management materials with excellent thermal insulation and storage properties. The synergistic interaction between CNC and KGM molecules could form the hydrogen bond cross-linking network to further improve the water resistance and mechanical properties of foams. The encapsulation of CNC microcapsules and the capillary action of KGM foam could effectively inhibit paraffin leakage in the KGM/CNC/paraffin (KCP) foams. Moreover, the enthalpy of melting and crystallization of KCP-8 foam was 144.9 J/g and 141.3 J/g, respectively. The thermal conductivity and infrared thermal imaging results showed that KCP-8 foams exhibited excellent thermal insulation and heat storage properties. This study provides ideas for the design and preparation of porous foams with thermal regulation properties, which has great potential in the field of intelligent textile and building energy conservation.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Carbohydrate Polymers
Carbohydrate Polymers 化学-高分子科学
CiteScore
22.40
自引率
8.00%
发文量
1286
审稿时长
47 days
期刊介绍: Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience. The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信