Differentially spliced mitochondrial CYP419A1 contributes to ethiprole resistance in Nilaparvata lugens

IF 3.2 2区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY
B. Zeng , A.J. Hayward , A. Pym , A. Duarte , W.T. Garrood , S-F Wu , C-F Gao , C. Zimmer , M. Mallott , T.G.E. Davies , R. Nauen , C. Bass , B.J. Troczka
{"title":"Differentially spliced mitochondrial CYP419A1 contributes to ethiprole resistance in Nilaparvata lugens","authors":"B. Zeng ,&nbsp;A.J. Hayward ,&nbsp;A. Pym ,&nbsp;A. Duarte ,&nbsp;W.T. Garrood ,&nbsp;S-F Wu ,&nbsp;C-F Gao ,&nbsp;C. Zimmer ,&nbsp;M. Mallott ,&nbsp;T.G.E. Davies ,&nbsp;R. Nauen ,&nbsp;C. Bass ,&nbsp;B.J. Troczka","doi":"10.1016/j.ibmb.2025.104260","DOIUrl":null,"url":null,"abstract":"<div><div>The brown planthopper <em>Nilaparvata lugens</em> is one of the most economically important pests of cultivated rice in Southeast Asia. Extensive use of insecticide treatments, such as imidacloprid, fipronil and ethiprole, has resulted in the emergence of multiple resistant strains of <em>N. lugens</em>. Previous investigation of the mechanisms of resistance to imidacloprid and ethiprole demonstrated that overexpression and qualitative changes in the cytochrome P450 gene <em>CYP6ER1</em> lead to enhanced metabolic detoxification of these compounds. Here, we present the identification of a secondary mechanism enhancing ethiprole resistance mediated by differential splicing and overexpression of CYP419A1, a planthopper-specific, mitochondrial P450 gene. Although metabolic resistance to insecticides is usually mediated by overexpression of P450 genes belonging to either CYP 3 or 4 clades, we validate the protective effect of over-expression of CYP419A1, <em>in vivo,</em> using transgenic <em>Drosophila melanogaster.</em> Additionally, we report some unusual features of both the CYP419A1 gene locus and protein, which include, altered splicing associated with resistance, a non-canonical heme-binding motif and an extreme 5’ end extension of the open reading frame. These results provide insight into the molecular mechanisms underpinning resistance to insecticides and have applied implications for the control of a highly damaging crop pest.</div></div>","PeriodicalId":330,"journal":{"name":"Insect Biochemistry and Molecular Biology","volume":"177 ","pages":"Article 104260"},"PeriodicalIF":3.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Insect Biochemistry and Molecular Biology","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0965174825000049","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The brown planthopper Nilaparvata lugens is one of the most economically important pests of cultivated rice in Southeast Asia. Extensive use of insecticide treatments, such as imidacloprid, fipronil and ethiprole, has resulted in the emergence of multiple resistant strains of N. lugens. Previous investigation of the mechanisms of resistance to imidacloprid and ethiprole demonstrated that overexpression and qualitative changes in the cytochrome P450 gene CYP6ER1 lead to enhanced metabolic detoxification of these compounds. Here, we present the identification of a secondary mechanism enhancing ethiprole resistance mediated by differential splicing and overexpression of CYP419A1, a planthopper-specific, mitochondrial P450 gene. Although metabolic resistance to insecticides is usually mediated by overexpression of P450 genes belonging to either CYP 3 or 4 clades, we validate the protective effect of over-expression of CYP419A1, in vivo, using transgenic Drosophila melanogaster. Additionally, we report some unusual features of both the CYP419A1 gene locus and protein, which include, altered splicing associated with resistance, a non-canonical heme-binding motif and an extreme 5’ end extension of the open reading frame. These results provide insight into the molecular mechanisms underpinning resistance to insecticides and have applied implications for the control of a highly damaging crop pest.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.40
自引率
5.30%
发文量
105
审稿时长
40 days
期刊介绍: This international journal publishes original contributions and mini-reviews in the fields of insect biochemistry and insect molecular biology. Main areas of interest are neurochemistry, hormone and pheromone biochemistry, enzymes and metabolism, hormone action and gene regulation, gene characterization and structure, pharmacology, immunology and cell and tissue culture. Papers on the biochemistry and molecular biology of other groups of arthropods are published if of general interest to the readership. Technique papers will be considered for publication if they significantly advance the field of insect biochemistry and molecular biology in the opinion of the Editors and Editorial Board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信