Alessandra Lavoratti, Onajite Abafe Diejomaoh, Annela M Seddon, Todor T Koev, Yaroslav Z Khimyak, Robert L Harniman, Katri S Kontturi, Tekla Tammelin, Stephen J Eichhorn
{"title":"Investigating the interactions between a poloxamer and TEMPO-oxidised cellulose nanocrystals.","authors":"Alessandra Lavoratti, Onajite Abafe Diejomaoh, Annela M Seddon, Todor T Koev, Yaroslav Z Khimyak, Robert L Harniman, Katri S Kontturi, Tekla Tammelin, Stephen J Eichhorn","doi":"10.1016/j.carbpol.2024.123156","DOIUrl":null,"url":null,"abstract":"<p><p>Cellulose nanocrystals (CNCs) have emerged as promising, sustainable materials, with applications in sensors, coatings, pharmaceuticals, and composites. Their modification with block copolymers such as PEO-PPO-PEO triblock copolymers of the Pluronic family has been attempted many times in the literature, with claims that such modification would happen by an anchor(PEO)-buoy(PPO)-anchor(PEO) mechanism. However, there is much disagreement in the literature on this. We herein physically adsorbed Pluronic F127, a nontoxic triblock copolymer poloxamer, comprising hydrophilic polyethylene oxide (PEO) and hydrophobic polypropylene oxide (PPO) blocks, onto the surface of TEMPO oxidised CNCs by simple mixing in an aqueous medium. The adsorption of F127 onto the surface of these CNCs was successful and persistent even after solubilisation. The thermal stability of modified TOCNCs increased (by ∼19 °C) compared to their neat and oxidised counterparts. F127-TOCNC suspensions exhibited comparable viscosity to their neat and oxidised counterparts without premature gelation of F127. NOESY NMR observations showed that PPO blocks are more proximal to the TOCNC than the PEO blocks. AFM and QCM-D analyses supported the formation of a rigid, thin layer of block copolymer surrounding the TOCNC. A degree of modification (7 %) was achieved, even after washing, proving that adsorption is persistent and mainly irreversible.</p>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"123156"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carbpol.2024.123156","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/15 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Cellulose nanocrystals (CNCs) have emerged as promising, sustainable materials, with applications in sensors, coatings, pharmaceuticals, and composites. Their modification with block copolymers such as PEO-PPO-PEO triblock copolymers of the Pluronic family has been attempted many times in the literature, with claims that such modification would happen by an anchor(PEO)-buoy(PPO)-anchor(PEO) mechanism. However, there is much disagreement in the literature on this. We herein physically adsorbed Pluronic F127, a nontoxic triblock copolymer poloxamer, comprising hydrophilic polyethylene oxide (PEO) and hydrophobic polypropylene oxide (PPO) blocks, onto the surface of TEMPO oxidised CNCs by simple mixing in an aqueous medium. The adsorption of F127 onto the surface of these CNCs was successful and persistent even after solubilisation. The thermal stability of modified TOCNCs increased (by ∼19 °C) compared to their neat and oxidised counterparts. F127-TOCNC suspensions exhibited comparable viscosity to their neat and oxidised counterparts without premature gelation of F127. NOESY NMR observations showed that PPO blocks are more proximal to the TOCNC than the PEO blocks. AFM and QCM-D analyses supported the formation of a rigid, thin layer of block copolymer surrounding the TOCNC. A degree of modification (7 %) was achieved, even after washing, proving that adsorption is persistent and mainly irreversible.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.