Bone Marrow Mononuclear Cell Transplantation Promotes Bone Healing via Gap Junction-Mediated Cell-Cell Interaction.

IF 4 2区 医学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
STEM CELLS Pub Date : 2025-01-23 DOI:10.1093/stmcls/sxae090
Yoshihito Suda, Akihiko Taguchi, Tomoyuki Matsumoto, Yuka Okinaka, Shinya Hayashi, Masanori Tsubosaka, Tomoyuki Kamenaga, Yuichi Kuroda, Naoki Nakano, Yuma Onoi, Shotaro Tachibana, Kensuke Wada, Akira Saito, Takuma Maeda, Shotaro Araki, Kohei Motono, Ryosuke Kuroda
{"title":"Bone Marrow Mononuclear Cell Transplantation Promotes Bone Healing via Gap Junction-Mediated Cell-Cell Interaction.","authors":"Yoshihito Suda, Akihiko Taguchi, Tomoyuki Matsumoto, Yuka Okinaka, Shinya Hayashi, Masanori Tsubosaka, Tomoyuki Kamenaga, Yuichi Kuroda, Naoki Nakano, Yuma Onoi, Shotaro Tachibana, Kensuke Wada, Akira Saito, Takuma Maeda, Shotaro Araki, Kohei Motono, Ryosuke Kuroda","doi":"10.1093/stmcls/sxae090","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.</p><p><strong>Methods: </strong>Using a murine fracture model, we aimed to elucidate the relationship between gap junction-mediated cell-to-cell interactions and enhanced fracture healing after BM-MNC transplantation. We evaluated the transfer of substances from BM-MNCs to vascular endothelial cells and osteoblasts in the tissues surrounding the fracture site and assessed the effects of BM-MNC transplantation on bone healing, angiogenesis, and osteogenesis.</p><p><strong>Results: </strong>BM-MNCs transferred substances to vascular endothelial cells and osteoblasts in the tissues surrounding the fracture site. Moreover, BM-MNC transplantation promoted bone healing via gap junction-mediated cell-to-cell interactions, accelerating both angiogenesis and osteogenesis.</p><p><strong>Conclusions: </strong>Our findings provide a novel understanding of fracture healing mechanisms and suggest that BM-MNC transplantation enhances bone healing through gap junction-mediated cell-to-cell interactions, contributing to the development of regenerative medicine strategies targeting bone repair.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae090","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.

Methods: Using a murine fracture model, we aimed to elucidate the relationship between gap junction-mediated cell-to-cell interactions and enhanced fracture healing after BM-MNC transplantation. We evaluated the transfer of substances from BM-MNCs to vascular endothelial cells and osteoblasts in the tissues surrounding the fracture site and assessed the effects of BM-MNC transplantation on bone healing, angiogenesis, and osteogenesis.

Results: BM-MNCs transferred substances to vascular endothelial cells and osteoblasts in the tissues surrounding the fracture site. Moreover, BM-MNC transplantation promoted bone healing via gap junction-mediated cell-to-cell interactions, accelerating both angiogenesis and osteogenesis.

Conclusions: Our findings provide a novel understanding of fracture healing mechanisms and suggest that BM-MNC transplantation enhances bone healing through gap junction-mediated cell-to-cell interactions, contributing to the development of regenerative medicine strategies targeting bone repair.

求助全文
约1分钟内获得全文 求助全文
来源期刊
STEM CELLS
STEM CELLS 医学-生物工程与应用微生物
CiteScore
10.30
自引率
1.90%
发文量
104
审稿时长
3 months
期刊介绍: STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology. STEM CELLS covers: Cancer Stem Cells, Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells, Regenerative Medicine, Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics, Tissue-Specific Stem Cells, Translational and Clinical Research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信