{"title":"Bone Marrow Mononuclear Cell Transplantation Promotes Bone Healing via Gap Junction-Mediated Cell-Cell Interaction.","authors":"Yoshihito Suda, Akihiko Taguchi, Tomoyuki Matsumoto, Yuka Okinaka, Shinya Hayashi, Masanori Tsubosaka, Tomoyuki Kamenaga, Yuichi Kuroda, Naoki Nakano, Yuma Onoi, Shotaro Tachibana, Kensuke Wada, Akira Saito, Takuma Maeda, Shotaro Araki, Kohei Motono, Ryosuke Kuroda","doi":"10.1093/stmcls/sxae090","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.</p><p><strong>Methods: </strong>Using a murine fracture model, we aimed to elucidate the relationship between gap junction-mediated cell-to-cell interactions and enhanced fracture healing after BM-MNC transplantation. We evaluated the transfer of substances from BM-MNCs to vascular endothelial cells and osteoblasts in the tissues surrounding the fracture site and assessed the effects of BM-MNC transplantation on bone healing, angiogenesis, and osteogenesis.</p><p><strong>Results: </strong>BM-MNCs transferred substances to vascular endothelial cells and osteoblasts in the tissues surrounding the fracture site. Moreover, BM-MNC transplantation promoted bone healing via gap junction-mediated cell-to-cell interactions, accelerating both angiogenesis and osteogenesis.</p><p><strong>Conclusions: </strong>Our findings provide a novel understanding of fracture healing mechanisms and suggest that BM-MNC transplantation enhances bone healing through gap junction-mediated cell-to-cell interactions, contributing to the development of regenerative medicine strategies targeting bone repair.</p>","PeriodicalId":231,"journal":{"name":"STEM CELLS","volume":" ","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"STEM CELLS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/stmcls/sxae090","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Aims: Bone marrow mononuclear cells (BM-MNCs) are a rich source of hematopoietic stem cells that have been widely used in experimental therapies for patients with various diseases, including fractures.Activation of angiogenesis is believed to be one of the major modes of action of BM-MNCs; however, the essential mechanism by which BM-MNCs activate angiogenesis remains elusive. This study aimed to demonstrate that BM-MNCs promote bone healing by enhancing angiogenesis through direct cell-to-cell interactions via gap junctions, in addition to a previously reported method.
Methods: Using a murine fracture model, we aimed to elucidate the relationship between gap junction-mediated cell-to-cell interactions and enhanced fracture healing after BM-MNC transplantation. We evaluated the transfer of substances from BM-MNCs to vascular endothelial cells and osteoblasts in the tissues surrounding the fracture site and assessed the effects of BM-MNC transplantation on bone healing, angiogenesis, and osteogenesis.
Results: BM-MNCs transferred substances to vascular endothelial cells and osteoblasts in the tissues surrounding the fracture site. Moreover, BM-MNC transplantation promoted bone healing via gap junction-mediated cell-to-cell interactions, accelerating both angiogenesis and osteogenesis.
Conclusions: Our findings provide a novel understanding of fracture healing mechanisms and suggest that BM-MNC transplantation enhances bone healing through gap junction-mediated cell-to-cell interactions, contributing to the development of regenerative medicine strategies targeting bone repair.
期刊介绍:
STEM CELLS, a peer reviewed journal published monthly, provides a forum for prompt publication of original investigative papers and concise reviews. STEM CELLS is read and written by clinical and basic scientists whose expertise encompasses the rapidly expanding fields of stem and progenitor cell biology.
STEM CELLS covers:
Cancer Stem Cells,
Embryonic Stem Cells/Induced Pluripotent Stem (iPS) Cells,
Regenerative Medicine,
Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics,
Tissue-Specific Stem Cells,
Translational and Clinical Research.