{"title":"Artificial intelligence in peptide-based drug design.","authors":"Silong Zhai, Tiantao Liu, Shaolong Lin, Dan Li, Huanxiang Liu, Xiaojun Yao, Tingjun Hou","doi":"10.1016/j.drudis.2025.104300","DOIUrl":null,"url":null,"abstract":"<p><p>Protein-protein interactions (PPIs) are fundamental to a variety of biological processes, but targeting them with small molecules is challenging because of their large and complex interaction interfaces. However, peptides have emerged as highly promising modulators of PPIs, because they can bind to protein surfaces with high affinity and specificity. Nonetheless, computational peptide design remains difficult, hindered by the intrinsic flexibility of peptides and the substantial computational resources required. Recent advances in artificial intelligence (AI) are paving new paths for peptide-based drug design. In this review, we explore the advanced deep generative models for designing target-specific peptide binders, highlight key challenges, and offer insights into the future direction of this rapidly evolving field.</p>","PeriodicalId":301,"journal":{"name":"Drug Discovery Today","volume":" ","pages":"104300"},"PeriodicalIF":6.5000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Discovery Today","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.drudis.2025.104300","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Protein-protein interactions (PPIs) are fundamental to a variety of biological processes, but targeting them with small molecules is challenging because of their large and complex interaction interfaces. However, peptides have emerged as highly promising modulators of PPIs, because they can bind to protein surfaces with high affinity and specificity. Nonetheless, computational peptide design remains difficult, hindered by the intrinsic flexibility of peptides and the substantial computational resources required. Recent advances in artificial intelligence (AI) are paving new paths for peptide-based drug design. In this review, we explore the advanced deep generative models for designing target-specific peptide binders, highlight key challenges, and offer insights into the future direction of this rapidly evolving field.
期刊介绍:
Drug Discovery Today delivers informed and highly current reviews for the discovery community. The magazine addresses not only the rapid scientific developments in drug discovery associated technologies but also the management, commercial and regulatory issues that increasingly play a part in how R&D is planned, structured and executed.
Features include comment by international experts, news and analysis of important developments, reviews of key scientific and strategic issues, overviews of recent progress in specific therapeutic areas and conference reports.