Z Lei, J Han, X Yi, X Luo, W Zhang, D He, C Gong, Y Zhang
{"title":"Higher PEPC activity and vein density contribute to improve cotton leaf water use efficiency under water stress.","authors":"Z Lei, J Han, X Yi, X Luo, W Zhang, D He, C Gong, Y Zhang","doi":"10.1111/plb.13765","DOIUrl":null,"url":null,"abstract":"<p><p>Plants with the C<sub>4</sub> photosynthetic pathway can withstand water stress better than plants with C<sub>3</sub> metabolism. However, it is unclear whether C<sub>4</sub> photosynthesis can be preliminarily activated in droughted cotton leaves, and if this contributes to increase in water use efficiency (WUE). An upland cotton (Gossypium hirsutum L., Xinluzao45) was used to determine gas exchange, stomatal and vein anatomy, phosphoenolpyruvate carboxykinase (PEPC) and Rubisco enzyme activity, and carbon isotope composition (δ<sup>13</sup>C) under well-watered, mild or moderate water stress. Water stress triggered reduced photosynthesis, stomatal conductance, and Rubisco activity, but higher vein density (VD), PEPC activity, and WUE. The correlations between δ<sup>13</sup>C and each of VD and PEPC activity implied that these coordinately contributed to higher leaf WUE via a preliminary induction of C<sub>4</sub> photosynthetic pathway. Preliminary C<sub>4</sub> photosynthesis indicated by more PEPC enzyme and veins offers an effective way to improve leaf WUE and potentially aids in acclimation to adverse growing conditions.</p>","PeriodicalId":220,"journal":{"name":"Plant Biology","volume":" ","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/plb.13765","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Plants with the C4 photosynthetic pathway can withstand water stress better than plants with C3 metabolism. However, it is unclear whether C4 photosynthesis can be preliminarily activated in droughted cotton leaves, and if this contributes to increase in water use efficiency (WUE). An upland cotton (Gossypium hirsutum L., Xinluzao45) was used to determine gas exchange, stomatal and vein anatomy, phosphoenolpyruvate carboxykinase (PEPC) and Rubisco enzyme activity, and carbon isotope composition (δ13C) under well-watered, mild or moderate water stress. Water stress triggered reduced photosynthesis, stomatal conductance, and Rubisco activity, but higher vein density (VD), PEPC activity, and WUE. The correlations between δ13C and each of VD and PEPC activity implied that these coordinately contributed to higher leaf WUE via a preliminary induction of C4 photosynthetic pathway. Preliminary C4 photosynthesis indicated by more PEPC enzyme and veins offers an effective way to improve leaf WUE and potentially aids in acclimation to adverse growing conditions.
期刊介绍:
Plant Biology is an international journal of broad scope bringing together the different subdisciplines, such as physiology, molecular biology, cell biology, development, genetics, systematics, ecology, evolution, ecophysiology, plant-microbe interactions, and mycology.
Plant Biology publishes original problem-oriented full-length research papers, short research papers, and review articles. Discussion of hot topics and provocative opinion articles are published under the heading Acute Views. From a multidisciplinary perspective, Plant Biology will provide a platform for publication, information and debate, encompassing all areas which fall within the scope of plant science.