{"title":"Eco-friendly one-pot hydrothermal synthesis of cyclodextrin metal-organic frameworks for enhanced CO<sub>2</sub> capture.","authors":"Xiaoyu Chen, Yan Zhang, Xiaonan Sui","doi":"10.1016/j.carbpol.2025.123250","DOIUrl":null,"url":null,"abstract":"<p><p>Polysaccharide-based metal-organic frameworks have attracted widespread attention due to their combination of the biocompatibility and flexibility of polysaccharides. Cyclodextrin are interesting bio-ligands in the construction of polysaccharide-based MOFs. Conventional methods for preparing cyclodextrin metal-organic frameworks (CD-MOFs) are often time-consuming and inefficient. In this study, cost-effective and environmentally friendly α- and β-CD-MOFs were successfully synthesized using a hydrothermal method, with optimized incubation time and solvent ratios. The materials were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and N₂ adsorption/desorption measurements. The CO₂ adsorption mechanism was also examined using Fourier transform infrared spectroscopy (FTIR). The results demonstrated excellent thermal and cycling stability of the materials. The CO₂ uptake capacities of α- and β-CD MOF-K were 10.8 and 11.2 cm<sup>3</sup>/g, respectively. Additionally, the CD-MOFs showed strong selectivity for CO₂ over N₂. Given the straightforward operational procedures, safety characteristics, and mild reaction conditions of CD-MOFs, it is reasonable to conclude that they are promising candidates for use as CO₂ adsorption materials.</p>","PeriodicalId":261,"journal":{"name":"Carbohydrate Polymers","volume":"352 ","pages":"123250"},"PeriodicalIF":10.7000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Carbohydrate Polymers","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.carbpol.2025.123250","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/8 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
Polysaccharide-based metal-organic frameworks have attracted widespread attention due to their combination of the biocompatibility and flexibility of polysaccharides. Cyclodextrin are interesting bio-ligands in the construction of polysaccharide-based MOFs. Conventional methods for preparing cyclodextrin metal-organic frameworks (CD-MOFs) are often time-consuming and inefficient. In this study, cost-effective and environmentally friendly α- and β-CD-MOFs were successfully synthesized using a hydrothermal method, with optimized incubation time and solvent ratios. The materials were characterized by powder X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetric analysis (TGA), and N₂ adsorption/desorption measurements. The CO₂ adsorption mechanism was also examined using Fourier transform infrared spectroscopy (FTIR). The results demonstrated excellent thermal and cycling stability of the materials. The CO₂ uptake capacities of α- and β-CD MOF-K were 10.8 and 11.2 cm3/g, respectively. Additionally, the CD-MOFs showed strong selectivity for CO₂ over N₂. Given the straightforward operational procedures, safety characteristics, and mild reaction conditions of CD-MOFs, it is reasonable to conclude that they are promising candidates for use as CO₂ adsorption materials.
期刊介绍:
Carbohydrate Polymers stands as a prominent journal in the glycoscience field, dedicated to exploring and harnessing the potential of polysaccharides with applications spanning bioenergy, bioplastics, biomaterials, biorefining, chemistry, drug delivery, food, health, nanotechnology, packaging, paper, pharmaceuticals, medicine, oil recovery, textiles, tissue engineering, wood, and various aspects of glycoscience.
The journal emphasizes the central role of well-characterized carbohydrate polymers, highlighting their significance as the primary focus rather than a peripheral topic. Each paper must prominently feature at least one named carbohydrate polymer, evident in both citation and title, with a commitment to innovative research that advances scientific knowledge.