Nanocomposite TiO2/ZnO/chitosan by method sol-gel for self-cleaning application.

IF 7.7 1区 化学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
R Novra Gabriela, Heryanto Heryanto, Dahlang Tahir
{"title":"Nanocomposite TiO<sub>2</sub>/ZnO/chitosan by method sol-gel for self-cleaning application.","authors":"R Novra Gabriela, Heryanto Heryanto, Dahlang Tahir","doi":"10.1016/j.ijbiomac.2025.140076","DOIUrl":null,"url":null,"abstract":"<p><p>TiO<sub>2</sub>/ZnO/Chitosan coated cotton fabric as a self-cleaning, which has been synthesized by various concentrations of TiO<sub>2</sub>: 0.5 g, 1 g, and 2 g through the sol-gel method at pH 9. The self-cleaning test was conducted on TiO<sub>2</sub>/ZnO/Chitosan-coated cotton fabric samples by irradiating for 15 h using UVA-UVB lamps with clothing stain dye. TiO<sub>2</sub>/ZnO/Chitosan composite's structural properties were analyzed from X-ray diffraction (XRD) spectra, chemical bonding by Fourier Transform Infrared (FTIR), and bandgap by quantitative analysis from UV-visible spectroscopy. The XRD diffraction peaks showed a slight shift to the right, except for the sample with the highest TiO<sub>2</sub> concentration, which showed a more significant shift. FTIR spectra showed the presence of Ti-O-Ti bonds at wavenumbers 500 cm<sup>-1</sup> - 700 cm<sup>-1</sup>, which identified the presence of TiO<sub>2</sub>, and at wavenumber 3485 cm<sup>-1</sup>, which was used for stretching-OH and -NH<sub>2</sub> of chitosan. The band gaps were 5.64 eV, 5.63 eV, and 5.58 eV for TiO<sub>2</sub>: 0.5 g, 1 g, and 2 g, respectively. The self-cleaning test showed that the best results were in the TiO2 sample with a concentration of 2 g at pH 9, where the dye successfully disappeared after exposure to UVA-UVB lamps for 15 h of irradiation.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"140076"},"PeriodicalIF":7.7000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2025.140076","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/20 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

TiO2/ZnO/Chitosan coated cotton fabric as a self-cleaning, which has been synthesized by various concentrations of TiO2: 0.5 g, 1 g, and 2 g through the sol-gel method at pH 9. The self-cleaning test was conducted on TiO2/ZnO/Chitosan-coated cotton fabric samples by irradiating for 15 h using UVA-UVB lamps with clothing stain dye. TiO2/ZnO/Chitosan composite's structural properties were analyzed from X-ray diffraction (XRD) spectra, chemical bonding by Fourier Transform Infrared (FTIR), and bandgap by quantitative analysis from UV-visible spectroscopy. The XRD diffraction peaks showed a slight shift to the right, except for the sample with the highest TiO2 concentration, which showed a more significant shift. FTIR spectra showed the presence of Ti-O-Ti bonds at wavenumbers 500 cm-1 - 700 cm-1, which identified the presence of TiO2, and at wavenumber 3485 cm-1, which was used for stretching-OH and -NH2 of chitosan. The band gaps were 5.64 eV, 5.63 eV, and 5.58 eV for TiO2: 0.5 g, 1 g, and 2 g, respectively. The self-cleaning test showed that the best results were in the TiO2 sample with a concentration of 2 g at pH 9, where the dye successfully disappeared after exposure to UVA-UVB lamps for 15 h of irradiation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Biological Macromolecules
International Journal of Biological Macromolecules 生物-生化与分子生物学
CiteScore
13.70
自引率
9.80%
发文量
2728
审稿时长
64 days
期刊介绍: The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信