Active Nematics Reinforce the Ratchet Flow in Dense Environments Without Jamming.

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Yisong Yao, Zihui Zhao, He Li, Yongfeng Zhao, H P Zhang, Masaki Sano
{"title":"Active Nematics Reinforce the Ratchet Flow in Dense Environments Without Jamming.","authors":"Yisong Yao, Zihui Zhao, He Li, Yongfeng Zhao, H P Zhang, Masaki Sano","doi":"10.1002/advs.202412750","DOIUrl":null,"url":null,"abstract":"<p><p>The past decade witnessed a surge in discoveries where biological systems, such as bacteria or living cells, inherently portray active polar or nematic behavior: they prefer to align with each other and form local order during migration. Although the underlying mechanisms remain unclear, utilizing their physical properties to achieve controllable cell-layer transport will be of fundamental importance. In this study, the ratchet effect is harnessed to control the collective motion of neural progenitor cells (NPCs) in vitro. NPCs travel back-and-forth and do not specify head or tail, and therefore regarded as nematics alike liquid crystals. Ratchet and splay-shaped confinements are crafted to modulate collective cell dynamics in dense environments, while jamming is not explicitly spotted. The adaptation of an agent-based simulation further revealed how the ratchet's asymmetry and active forces from nematic order synergistically reinforce the directional cell flow. These findings provide insights into topotaxis in cell populations when restricted to crowded 2D ratchets and the mechanisms that regulate collective behavior of the cells.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412750"},"PeriodicalIF":14.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412750","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The past decade witnessed a surge in discoveries where biological systems, such as bacteria or living cells, inherently portray active polar or nematic behavior: they prefer to align with each other and form local order during migration. Although the underlying mechanisms remain unclear, utilizing their physical properties to achieve controllable cell-layer transport will be of fundamental importance. In this study, the ratchet effect is harnessed to control the collective motion of neural progenitor cells (NPCs) in vitro. NPCs travel back-and-forth and do not specify head or tail, and therefore regarded as nematics alike liquid crystals. Ratchet and splay-shaped confinements are crafted to modulate collective cell dynamics in dense environments, while jamming is not explicitly spotted. The adaptation of an agent-based simulation further revealed how the ratchet's asymmetry and active forces from nematic order synergistically reinforce the directional cell flow. These findings provide insights into topotaxis in cell populations when restricted to crowded 2D ratchets and the mechanisms that regulate collective behavior of the cells.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信