Erbium: key to simultaneously achieving superior temperature-stability and high magnetic properties in 2 : 17-type permanent magnets.

IF 12.2 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Zan Long, Chaoyue Zhang, Yuqing Li, Baoguo Zhang, Mengying Bian, Chong Ling, Youning Kang, Hongguo Zhang, Qiong Wu, Ming Yue
{"title":"Erbium: key to simultaneously achieving superior temperature-stability and high magnetic properties in 2 : 17-type permanent magnets.","authors":"Zan Long, Chaoyue Zhang, Yuqing Li, Baoguo Zhang, Mengying Bian, Chong Ling, Youning Kang, Hongguo Zhang, Qiong Wu, Ming Yue","doi":"10.1039/d4mh01765j","DOIUrl":null,"url":null,"abstract":"<p><p>To address the demands of rapidly advancing precision instruments requiring higher efficiency and miniaturization, permanent magnets must exhibit exceptional energy density, temperature stability, high magnetic energy product [(<i>BH</i>)<sub>max</sub>], and adequate coercivity (<i>H</i><sub>cj</sub>). Herein, we design rare earth Er-based magnets (2 : 17-type Er-magnets) with a composition of (Er, Sm)(Co, Fe, Cu, Zr)<sub>7.6</sub>. Erbium-based compounds (Er<sub>2</sub>Co<sub>17</sub>) offer a unique combination of temperature compensation and high saturation magnetization compared to other heavy rare earth elements, resulting in 2 : 17-type Er-magnets with superior temperature stability in <i>B</i><sub>r</sub> and (<i>BH</i>)<sub>max</sub>. Partially substituting Sm reduces the energy barrier for the 2 : 17H-to-2 : 17R phase transition, promoting the development of a complete cellular structure and achieving enhanced coercivity. Notably, the optimal performance is obtained with Er constituting 60% of the total rare earth content, delivering a near-zero temperature-coefficient for <i>B</i><sub>r</sub> and (<i>BH</i>)<sub>max</sub> within 20-150 °C while maintaining <i>B</i><sub>r</sub> at 8.92 kG, <i>H</i><sub>cj</sub> at 29.83 kOe, and (<i>BH</i>)<sub>max</sub> at 18.5 MGOe. These 2 : 17-type Er-magnets provide valuable insights for developing permanent magnets with exceptional comprehensive properties.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d4mh01765j","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

To address the demands of rapidly advancing precision instruments requiring higher efficiency and miniaturization, permanent magnets must exhibit exceptional energy density, temperature stability, high magnetic energy product [(BH)max], and adequate coercivity (Hcj). Herein, we design rare earth Er-based magnets (2 : 17-type Er-magnets) with a composition of (Er, Sm)(Co, Fe, Cu, Zr)7.6. Erbium-based compounds (Er2Co17) offer a unique combination of temperature compensation and high saturation magnetization compared to other heavy rare earth elements, resulting in 2 : 17-type Er-magnets with superior temperature stability in Br and (BH)max. Partially substituting Sm reduces the energy barrier for the 2 : 17H-to-2 : 17R phase transition, promoting the development of a complete cellular structure and achieving enhanced coercivity. Notably, the optimal performance is obtained with Er constituting 60% of the total rare earth content, delivering a near-zero temperature-coefficient for Br and (BH)max within 20-150 °C while maintaining Br at 8.92 kG, Hcj at 29.83 kOe, and (BH)max at 18.5 MGOe. These 2 : 17-type Er-magnets provide valuable insights for developing permanent magnets with exceptional comprehensive properties.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信