Bioorthogonal reaction-mediated photosensitizer-peptide conjugate anchoring on cell membranes for enhanced photodynamic therapy.

IF 5.8 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Buwei Hu, Chenlin Ji, Zhuohang Zhou, Xuehan Xu, Luyi Wang, Tingting Cao, Jianjun Cheng, Rui Sun
{"title":"Bioorthogonal reaction-mediated photosensitizer-peptide conjugate anchoring on cell membranes for enhanced photodynamic therapy.","authors":"Buwei Hu, Chenlin Ji, Zhuohang Zhou, Xuehan Xu, Luyi Wang, Tingting Cao, Jianjun Cheng, Rui Sun","doi":"10.1039/d4bm01602e","DOIUrl":null,"url":null,"abstract":"<p><p>Photodynamic therapy (PDT), utilizing a photosensitizer (PS) to induce tumor cell death, is an effective modality for cancer treatment. PS-peptide conjugates have recently demonstrated remarkable antitumor potential in preclinical trials. However, the limited cell membrane binding affinity and rapid systemic clearance have hindered their transition to clinical applications. To address these challenges, we investigated whether <i>in vivo</i> covalent chemistry could enhance tumor accumulation and potentiate antitumor efficacy. Specifically, we synthesized a PS-peptide conjugate termed P-DBCO-Ce6, with chlorin e6 (Ce6) and dibenzocyclooctyne (DBCO) conjugated to a negatively charged short peptide. By employing metabolic glycoengineering and bioorthogonal reactions, P-DBCO-Ce6 achieves covalent bonding to the cell membrane, enabling prolonged retention of the PS on the cell surface and the <i>in situ</i> generation of reactive oxygen species (ROS) on cell membranes to kill tumor cells. <i>In vivo</i> studies demonstrated a 3.3-fold increase in tumor accumulation of the PS through bioorthogonal reactions compared to the control group, confirming that click chemistry can effectively enhance PS tumor accumulation. This approach allows for the effective elimination of tumors with a single treatment. The improved efficiency of this strategy provides new insights into the design of PDT systems for potential clinical applications.</p>","PeriodicalId":65,"journal":{"name":"Biomaterials Science","volume":" ","pages":""},"PeriodicalIF":5.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1039/d4bm01602e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Photodynamic therapy (PDT), utilizing a photosensitizer (PS) to induce tumor cell death, is an effective modality for cancer treatment. PS-peptide conjugates have recently demonstrated remarkable antitumor potential in preclinical trials. However, the limited cell membrane binding affinity and rapid systemic clearance have hindered their transition to clinical applications. To address these challenges, we investigated whether in vivo covalent chemistry could enhance tumor accumulation and potentiate antitumor efficacy. Specifically, we synthesized a PS-peptide conjugate termed P-DBCO-Ce6, with chlorin e6 (Ce6) and dibenzocyclooctyne (DBCO) conjugated to a negatively charged short peptide. By employing metabolic glycoengineering and bioorthogonal reactions, P-DBCO-Ce6 achieves covalent bonding to the cell membrane, enabling prolonged retention of the PS on the cell surface and the in situ generation of reactive oxygen species (ROS) on cell membranes to kill tumor cells. In vivo studies demonstrated a 3.3-fold increase in tumor accumulation of the PS through bioorthogonal reactions compared to the control group, confirming that click chemistry can effectively enhance PS tumor accumulation. This approach allows for the effective elimination of tumors with a single treatment. The improved efficiency of this strategy provides new insights into the design of PDT systems for potential clinical applications.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomaterials Science
Biomaterials Science MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.50%
发文量
556
期刊介绍: Biomaterials Science is an international high impact journal exploring the science of biomaterials and their translation towards clinical use. Its scope encompasses new concepts in biomaterials design, studies into the interaction of biomaterials with the body, and the use of materials to answer fundamental biological questions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信