On the number of normalized solutions for a fractional Schrödinger problem with logarithmic nonlinearity

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Xiaolu Lin, Shenzhou Zheng
{"title":"On the number of normalized solutions for a fractional Schrödinger problem with logarithmic nonlinearity","authors":"Xiaolu Lin, Shenzhou Zheng","doi":"10.1016/j.cnsns.2025.108618","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the multiplicity and concentration of normalized solutions to a fractional logarithmic Schrödinger problem <mml:math altimg=\"si1.svg\" display=\"block\"><mml:mrow><mml:msup><mml:mrow><mml:mi>ɛ</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn><mml:mi>s</mml:mi></mml:mrow></mml:msup><mml:msup><mml:mrow><mml:mrow><mml:mo>(</mml:mo><mml:mo>−</mml:mo><mml:mi>Δ</mml:mi><mml:mo>)</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mi>s</mml:mi></mml:mrow></mml:msup><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mi>V</mml:mi><mml:mrow><mml:mo>(</mml:mo><mml:mi>x</mml:mi><mml:mo>)</mml:mo></mml:mrow><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi>λ</mml:mi><mml:mi>u</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">+</mml:mo><mml:mi>u</mml:mi><mml:mo>log</mml:mo><mml:msup><mml:mrow><mml:mi>u</mml:mi></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mspace width=\"1em\"></mml:mspace><mml:mtext>in</mml:mtext><mml:mspace width=\"1em\"></mml:mspace><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:math> with the prescribed mass <mml:math altimg=\"si2.svg\" display=\"inline\"><mml:mrow><mml:msub><mml:mrow><mml:mo>∫</mml:mo></mml:mrow><mml:mrow><mml:msup><mml:mrow><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup></mml:mrow></mml:msub><mml:msup><mml:mrow><mml:mrow><mml:mo>|</mml:mo><mml:mi>u</mml:mi><mml:mo>|</mml:mo></mml:mrow></mml:mrow><mml:mrow><mml:mn>2</mml:mn></mml:mrow></mml:msup><mml:mi mathvariant=\"normal\">d</mml:mi><mml:mi>x</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mi>a</mml:mi><mml:msup><mml:mrow><mml:mi>ɛ</mml:mi></mml:mrow><mml:mrow><mml:mi>N</mml:mi></mml:mrow></mml:msup><mml:mspace width=\"1em\"></mml:mspace><mml:mtext>with</mml:mtext><mml:mspace width=\"1em\"></mml:mspace><mml:mi>a</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>, where <mml:math altimg=\"si3.svg\" display=\"inline\"><mml:mrow><mml:mi>ɛ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">&gt;</mml:mo><mml:mn>0</mml:mn></mml:mrow></mml:math>, <mml:math altimg=\"si4.svg\" display=\"inline\"><mml:mrow><mml:mi>λ</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">∈</mml:mo><mml:mi mathvariant=\"double-struck\">R</mml:mi></mml:mrow></mml:math> is unknown and appears as a Lagrange multiplier. By the minimization method combined with penalization technique and Ljusternik–Schnirelmann theory, we prove the multiplicity of normalized solutions where the numbers of normalized solutions are linked to the topology of the set where potential <mml:math altimg=\"si5.svg\" display=\"inline\"><mml:mi>V</mml:mi></mml:math> attains its minimum. Moreover, the concentration and decay of normalized solutions are analyzed in the end. The above properties of our normalized solutions are also new, even for <mml:math altimg=\"si6.svg\" display=\"inline\"><mml:mrow><mml:mi>s</mml:mi><mml:mo linebreak=\"goodbreak\" linebreakstyle=\"after\">=</mml:mo><mml:mn>1</mml:mn></mml:mrow></mml:math>.","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"1 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1016/j.cnsns.2025.108618","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate the multiplicity and concentration of normalized solutions to a fractional logarithmic Schrödinger problem ɛ2s(Δ)su+V(x)u=λu+ulogu2inRN with the prescribed mass RN|u|2dx=aɛNwitha>0, where ɛ>0, λR is unknown and appears as a Lagrange multiplier. By the minimization method combined with penalization technique and Ljusternik–Schnirelmann theory, we prove the multiplicity of normalized solutions where the numbers of normalized solutions are linked to the topology of the set where potential V attains its minimum. Moreover, the concentration and decay of normalized solutions are analyzed in the end. The above properties of our normalized solutions are also new, even for s=1.
具有对数非线性的分数阶Schrödinger问题的归一化解的个数
本文研究了一类分数对数Schrödinger问题的归一化解的多重性和集中性,该问题具有规定质量∫RN|u|2dx=a æ Nwitha>0,其中λ∈R是未知的,表现为拉格朗日乘子。通过结合惩罚技术和Ljusternik-Schnirelmann理论的最小化方法,证明了归一化解的数目与势V达到其最小值的集合拓扑相关联的归一化解的多重性。最后分析了归一化溶液的浓度和衰减。上述归一化解的性质也是新的,即使对于s=1也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信