Saptarsi Ghosh, Martin Frentrup, Alexander M. Hinz, James W. Pomeroy, Daniel Field, David J. Wallis, Martin Kuball, Rachel A. Oliver
{"title":"Buffer-Less Gallium Nitride High Electron Mobility Heterostructures on Silicon","authors":"Saptarsi Ghosh, Martin Frentrup, Alexander M. Hinz, James W. Pomeroy, Daniel Field, David J. Wallis, Martin Kuball, Rachel A. Oliver","doi":"10.1002/adma.202413127","DOIUrl":null,"url":null,"abstract":"<p>Thick metamorphic buffers are considered indispensable for III-V semiconductor heteroepitaxy on large lattice and thermal-expansion mismatched silicon substrates. However, III-nitride buffers in conventional GaN-on-Si high electron mobility transistors (HEMT) impose a substantial thermal resistance, deteriorating device efficiency and lifetime by throttling heat extraction. To circumvent this, a systematic methodology for the direct growth of GaN after the AlN nucleation layer on six-inch silicon substrates is demonstrated using metal-organic vapor phase epitaxy (MOVPE). Crucial growth-stress modulation to prevent epilayer cracking is achieved even without buffers, and threading dislocation densities comparable to those in buffered structures are realized. The buffer-less design yields a GaN-to-substrate thermal resistance of (11 ± 4) m<sup>2</sup> K GW<sup>−1</sup>, an order of magnitude reduction over conventional GaN-on-Si and one of the lowest on any non-native substrate. As-grown AlGaN/AlN/GaN heterojunctions on this template show a high-quality 2D electron gas (2DEG) whose room-temperature Hall-effect mobility exceeds 2000 cm<sup>2</sup> V<sup>−1</sup> s<sup>−1</sup>, rivaling the best-reported values. As further validation, the low-temperature magnetoresistance of this 2DEG shows clear Shubnikov-de-Haas oscillations, a quantum lifetime > 0.180 ps, and tell-tale signatures of spin-splitting. These results could establish a new platform for III-nitrides, potentially enhancing the energy efficiency of power transistors and enabling fundamental investigations into electron dynamics in quasi-2D wide-bandgap systems.</p>","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"37 9","pages":""},"PeriodicalIF":26.8000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adma.202413127","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/adma.202413127","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Thick metamorphic buffers are considered indispensable for III-V semiconductor heteroepitaxy on large lattice and thermal-expansion mismatched silicon substrates. However, III-nitride buffers in conventional GaN-on-Si high electron mobility transistors (HEMT) impose a substantial thermal resistance, deteriorating device efficiency and lifetime by throttling heat extraction. To circumvent this, a systematic methodology for the direct growth of GaN after the AlN nucleation layer on six-inch silicon substrates is demonstrated using metal-organic vapor phase epitaxy (MOVPE). Crucial growth-stress modulation to prevent epilayer cracking is achieved even without buffers, and threading dislocation densities comparable to those in buffered structures are realized. The buffer-less design yields a GaN-to-substrate thermal resistance of (11 ± 4) m2 K GW−1, an order of magnitude reduction over conventional GaN-on-Si and one of the lowest on any non-native substrate. As-grown AlGaN/AlN/GaN heterojunctions on this template show a high-quality 2D electron gas (2DEG) whose room-temperature Hall-effect mobility exceeds 2000 cm2 V−1 s−1, rivaling the best-reported values. As further validation, the low-temperature magnetoresistance of this 2DEG shows clear Shubnikov-de-Haas oscillations, a quantum lifetime > 0.180 ps, and tell-tale signatures of spin-splitting. These results could establish a new platform for III-nitrides, potentially enhancing the energy efficiency of power transistors and enabling fundamental investigations into electron dynamics in quasi-2D wide-bandgap systems.
期刊介绍:
Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.