Nanoengineered RF-Sputtered Mn3O4 Cathode Thin Films for Aqueous Zinc-Ion Batteries: Insights into Diffusion Dynamics and Application Potential

IF 4.6 2区 化学 Q2 CHEMISTRY, PHYSICAL
Kathiresan C., Sruthy Subash, Udhayakumar S., Varun Karthik M., Kamala Bharathi K.
{"title":"Nanoengineered RF-Sputtered Mn3O4 Cathode Thin Films for Aqueous Zinc-Ion Batteries: Insights into Diffusion Dynamics and Application Potential","authors":"Kathiresan C., Sruthy Subash, Udhayakumar S., Varun Karthik M., Kamala Bharathi K.","doi":"10.1021/acs.jpclett.4c03514","DOIUrl":null,"url":null,"abstract":"Manganese oxides are a promising cathode material for aqueous zinc-ion batteries (AZIBs), but thin-film configurations remain underexplored. This study investigates the electrochemical dynamics of 60 nm thin Mn<sub>3</sub>O<sub>4</sub> thin films, fabricated via RF magnetron reactive sputtering. It addresses the highest reported capacity (25 mAh/g) in thin film form, stability over 500 cycles, effective performance across varying current rates, surpassing previous studies and challenges such as phase stability, and capacity fading over extended cycling, aiming to enhance uniformity, minimizing diffusion barriers for improved performance. EIS reveals Zn<sup>2</sup><sup>+</sup> diffusion coefficients of 1.503 × 10<sup>–</sup><sup>7</sup>, 1.336 × 10<sup>–</sup><sup>1</sup><sup>6</sup>, and 1.947 × 10<sup>–</sup><sup>2</sup><sup>0</sup> cm<sup>2</sup>/s in precycle, charged, and discharged states, respectively, highlighting evolving diffusion dynamics during cycling. Structural instability during discharge leads to a decline in diffusion performance, emphasizing the need for material and interfacial optimizations to enhance stability and mitigate degradation. These findings underscore the critical role of interfacial engineering and structural stability in maintaining high ion diffusion rates and minimizing morphological degradation during cycling. The present study explores the critical role of targeted engineering in unlocking their full potential for lightweight, miniaturized, high-performance microbatteries for energy storage applications.","PeriodicalId":62,"journal":{"name":"The Journal of Physical Chemistry Letters","volume":"51 1","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry Letters","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.jpclett.4c03514","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Manganese oxides are a promising cathode material for aqueous zinc-ion batteries (AZIBs), but thin-film configurations remain underexplored. This study investigates the electrochemical dynamics of 60 nm thin Mn3O4 thin films, fabricated via RF magnetron reactive sputtering. It addresses the highest reported capacity (25 mAh/g) in thin film form, stability over 500 cycles, effective performance across varying current rates, surpassing previous studies and challenges such as phase stability, and capacity fading over extended cycling, aiming to enhance uniformity, minimizing diffusion barriers for improved performance. EIS reveals Zn2+ diffusion coefficients of 1.503 × 107, 1.336 × 1016, and 1.947 × 1020 cm2/s in precycle, charged, and discharged states, respectively, highlighting evolving diffusion dynamics during cycling. Structural instability during discharge leads to a decline in diffusion performance, emphasizing the need for material and interfacial optimizations to enhance stability and mitigate degradation. These findings underscore the critical role of interfacial engineering and structural stability in maintaining high ion diffusion rates and minimizing morphological degradation during cycling. The present study explores the critical role of targeted engineering in unlocking their full potential for lightweight, miniaturized, high-performance microbatteries for energy storage applications.

Abstract Image

纳米工程射频溅射锌离子电池的Mn3O4阴极薄膜:扩散动力学和应用潜力的见解
锰氧化物是一种很有前途的水性锌离子电池(azib)正极材料,但其薄膜结构仍未得到充分研究。研究了射频磁控反应溅射法制备的60 nm Mn3O4薄膜的电化学动力学。它解决了薄膜形式的最高容量(25 mAh/g), 500次循环以上的稳定性,在不同电流速率下的有效性能,超越了先前的研究和挑战,例如相稳定性,以及延长循环期间的容量衰减,旨在增强均匀性,最大限度地减少扩散障碍以提高性能。EIS显示Zn2+在预循环、充电和放电状态下的扩散系数分别为1.503 × 10-7、1.336 × 10-16和1.947 × 10-20 cm2/s,突出了循环过程中扩散动力学的演变。放电过程中的结构不稳定导致扩散性能下降,因此需要对材料和界面进行优化,以增强稳定性并减轻降解。这些发现强调了界面工程和结构稳定性在维持高离子扩散速率和最小化循环过程中形态退化方面的关键作用。本研究探讨了目标工程在释放其用于储能应用的轻量化、小型化、高性能微电池的全部潜力方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
The Journal of Physical Chemistry Letters
The Journal of Physical Chemistry Letters CHEMISTRY, PHYSICAL-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
9.60
自引率
7.00%
发文量
1519
审稿时长
1.6 months
期刊介绍: The Journal of Physical Chemistry (JPC) Letters is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, chemical physicists, physicists, material scientists, and engineers. An important criterion for acceptance is that the paper reports a significant scientific advance and/or physical insight such that rapid publication is essential. Two issues of JPC Letters are published each month.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信