Reforming Multifunctional Solid Electrolyte Interphase for High-Performance Zn Anode Through a Nature-Inspired Strategy

IF 19 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Qing Ma, Weihao Song, Xiaoya Zhang, Na Yang, Bing Wu, Chengjin Zheng, Masatsugu Fujishige, Kenji Takeuchi, Morinobu Endo, Jin Niu, Feng Wang
{"title":"Reforming Multifunctional Solid Electrolyte Interphase for High-Performance Zn Anode Through a Nature-Inspired Strategy","authors":"Qing Ma,&nbsp;Weihao Song,&nbsp;Xiaoya Zhang,&nbsp;Na Yang,&nbsp;Bing Wu,&nbsp;Chengjin Zheng,&nbsp;Masatsugu Fujishige,&nbsp;Kenji Takeuchi,&nbsp;Morinobu Endo,&nbsp;Jin Niu,&nbsp;Feng Wang","doi":"10.1002/adfm.202422159","DOIUrl":null,"url":null,"abstract":"<p>Aqueous Zn metal batteries (AZMBs) have appealing advantages, including good safety, low cost, and high volumetric energy density. However, serious parasitic reactions and dendrite growth at Zn anodes hinder practical applications of AZMBs. Here, a nature-inspired strategy is proposed to improve Zn anodes using plant-cell derivatives as additives for ZnSO<sub>4</sub> electrolytes. In the electrolyte, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidized cellulose nanofibers (TOCN) and calcium lignosulfonate (CL) with specific functional groups modulate the Zn<sup>2+</sup> solvation structure. More importantly, they reform a cell membrane/wall-like functional layer with high mechanical strength and selective Zn<sup>2+</sup> transmission/plating on the anode surface, which enables uniform Zn deposition and alleviates side reactions. As a result, symmetric cells using the dual-additive electrolyte exhibit highly reversible and dendrite-free Zn stripping/plating behavior for over 2000 and 500 h at 2 mA cm<sup>−2</sup>/1 mAh cm<sup>−2</sup> and 10 mA cm<sup>−2</sup>/10 mAh cm<sup>−2</sup>, respectively. Furthermore, a Zn//NH<sub>4</sub>V<sub>4</sub>O<sub>10</sub> full cell using the electrolyte shows a good cycling stability over 300 cycles with a low negative/positive (N/P) ratio. A high energy density of 92.9 Wh kg<sup>−1</sup> can be delivered with limited metallic Zn consumption, showing that the electrolyte has good prospects for practical use.</p>","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"35 19","pages":""},"PeriodicalIF":19.0000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adfm.202422159","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Aqueous Zn metal batteries (AZMBs) have appealing advantages, including good safety, low cost, and high volumetric energy density. However, serious parasitic reactions and dendrite growth at Zn anodes hinder practical applications of AZMBs. Here, a nature-inspired strategy is proposed to improve Zn anodes using plant-cell derivatives as additives for ZnSO4 electrolytes. In the electrolyte, TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl)-oxidized cellulose nanofibers (TOCN) and calcium lignosulfonate (CL) with specific functional groups modulate the Zn2+ solvation structure. More importantly, they reform a cell membrane/wall-like functional layer with high mechanical strength and selective Zn2+ transmission/plating on the anode surface, which enables uniform Zn deposition and alleviates side reactions. As a result, symmetric cells using the dual-additive electrolyte exhibit highly reversible and dendrite-free Zn stripping/plating behavior for over 2000 and 500 h at 2 mA cm−2/1 mAh cm−2 and 10 mA cm−2/10 mAh cm−2, respectively. Furthermore, a Zn//NH4V4O10 full cell using the electrolyte shows a good cycling stability over 300 cycles with a low negative/positive (N/P) ratio. A high energy density of 92.9 Wh kg−1 can be delivered with limited metallic Zn consumption, showing that the electrolyte has good prospects for practical use.

Abstract Image

利用自然启发策略重整高性能锌阳极的多功能固体电解质界面相
水锌金属电池(azmb)具有安全性好、成本低、体积能量密度高等优点。然而,锌阳极上严重的寄生反应和枝晶生长阻碍了azmb的实际应用。本文提出了一种受自然启发的策略,利用植物细胞衍生物作为ZnSO4电解质的添加剂来改善Zn阳极。在电解质中,TEMPO(2,2,6,6-四甲基哌替啶-1-氧基)氧化纤维素纳米纤维(TOCN)和具有特定官能团的木质素磺酸钙(CL)调节Zn2+的溶剂化结构。更重要的是,它们在阳极表面形成了具有高机械强度和选择性Zn2+传输/镀的细胞膜/壁状功能层,使锌沉积均匀,减轻了副反应。结果表明,使用双添加剂电解质的对称电池在2 mA cm - 2/1 mAh cm - 2和10 mA cm - 2/10 mAh cm - 2下分别表现出高度可逆和无枝晶的锌剥离/镀行为,分别超过2000和500小时。此外,使用该电解质的Zn/ NH4V4O10全电池在300次循环中表现出良好的循环稳定性,负/正(N/P)比较低。在金属锌消耗有限的情况下,该电解质可以提供92.9 Wh kg−1的高能量密度,表明该电解质具有良好的实用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advanced Functional Materials
Advanced Functional Materials 工程技术-材料科学:综合
CiteScore
29.50
自引率
4.20%
发文量
2086
审稿时长
2.1 months
期刊介绍: Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week. Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信