In-situ electrochemical preparation of MnOx/CC with porous structure and mixed valence for supercapacitor

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Xin Wu, Tingting Zhan, Shaozu Sun, Wenbo Chen, Ao Yu, Saicheng Qiu, Lianxi Chen, Deyu Qu, Junxin Duan, Xi Li
{"title":"In-situ electrochemical preparation of MnOx/CC with porous structure and mixed valence for supercapacitor","authors":"Xin Wu, Tingting Zhan, Shaozu Sun, Wenbo Chen, Ao Yu, Saicheng Qiu, Lianxi Chen, Deyu Qu, Junxin Duan, Xi Li","doi":"10.1016/j.electacta.2025.145733","DOIUrl":null,"url":null,"abstract":"Manganese oxide(MnO<em><sub>x</sub></em>) with an ultra-high theoretical specific capacitance is a prospective material for supercapacitors. However, the poor conductivity degrades the capacitive performance of MnO<em><sub>x</sub></em>. Herein, MnO<em><sub>x</sub></em>/carbon cloth (MnO<em><sub>x</sub></em>/CC) with a porous structure and mixed valence was in-situ prepared by an electrodeposition-electrooxidation method. The loose and porous lamellar structure of MnO<em><sub>x</sub></em>/CC-R(V<sub>6</sub>T<sub>4800</sub>)-O(V<sub>2</sub>T<sub>1600</sub>) increased the contact area between the electrode and the electrolyte, provided abundant active sites and mitigated the volume expansion during the ion insertion/extraction process. Meanwhile, the optimal ratio of Mn(Ⅲ) to Mn(Ⅳ) in MnO<em><sub>x</sub></em>/CC-R(V<sub>6</sub>T<sub>4800</sub>)-O(V<sub>2</sub>T<sub>1600</sub>) significantly improved the conductivity of MnO<em><sub>x</sub></em>. Therefore, the electrochemical performance of MnO<em><sub>x</sub></em> was effectively enhanced with a favorable specific capacitance up to 2591.2 mF∙cm<sup>−2</sup> (205.1 F∙g<sup>−1</sup>) at 1 mA⸱cm<sup>−2</sup>, an outstanding rate capacity (81.2% retention at 1 to 20 mA⸱cm<sup>−2</sup>) and superior cycle performance (91.2% after 5000 cycles). Moreover, the asymmetric supercapacitor MnO<em><sub>x</sub></em>/CC//Fe<sub>2</sub>O<sub>3</sub>/CC could reach 768.2 mF⸱cm<sup>−2</sup> at 1 mA⸱cm<sup>−2</sup> and had 78.4% retention after 10000 cycles. In this work, we demonstrated the effectiveness of this in-situ electrochemical preparation of porous structure and mixed valence materials, which we hope will help develop high-performance electrode materials.","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"75 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.electacta.2025.145733","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

Abstract

Manganese oxide(MnOx) with an ultra-high theoretical specific capacitance is a prospective material for supercapacitors. However, the poor conductivity degrades the capacitive performance of MnOx. Herein, MnOx/carbon cloth (MnOx/CC) with a porous structure and mixed valence was in-situ prepared by an electrodeposition-electrooxidation method. The loose and porous lamellar structure of MnOx/CC-R(V6T4800)-O(V2T1600) increased the contact area between the electrode and the electrolyte, provided abundant active sites and mitigated the volume expansion during the ion insertion/extraction process. Meanwhile, the optimal ratio of Mn(Ⅲ) to Mn(Ⅳ) in MnOx/CC-R(V6T4800)-O(V2T1600) significantly improved the conductivity of MnOx. Therefore, the electrochemical performance of MnOx was effectively enhanced with a favorable specific capacitance up to 2591.2 mF∙cm−2 (205.1 F∙g−1) at 1 mA⸱cm−2, an outstanding rate capacity (81.2% retention at 1 to 20 mA⸱cm−2) and superior cycle performance (91.2% after 5000 cycles). Moreover, the asymmetric supercapacitor MnOx/CC//Fe2O3/CC could reach 768.2 mF⸱cm−2 at 1 mA⸱cm−2 and had 78.4% retention after 10000 cycles. In this work, we demonstrated the effectiveness of this in-situ electrochemical preparation of porous structure and mixed valence materials, which we hope will help develop high-performance electrode materials.
多孔混合价MnOx/CC的原位电化学制备
具有超高理论比电容的氧化锰(MnOx)是极具发展前景的超级电容器材料。然而,导电性差会降低MnOx的电容性能。本文采用电沉积-电氧化法原位制备了具有多孔结构和混合价态的MnOx/CC (MnOx/CC)。MnOx/CC-R(V6T4800)-O(V2T1600)松散多孔的片层结构增加了电极与电解质的接触面积,提供了丰富的活性位点,减轻了离子插入/提取过程中的体积膨胀。同时,MnOx/CC-R(V6T4800)-O(V2T1600)中Mn(Ⅲ)与Mn(Ⅳ)的最佳配比显著提高了MnOx的导电性。因此,MnOx的电化学性能得到了有效提高,在1 mA⸱cm−2下,MnOx的比电容高达2591.2 mF∙cm−2 (205.1 F∙g−1),在1 ~ 20 mA⸱cm−2下,MnOx的倍率容量保持率为81.2%,循环性能在5000次循环后达到91.2%。此外,不对称超级电容器MnOx/CC//Fe2O3/CC在1 mA⸱cm−2下可达到768.2 mF⸱cm−2,循环10000次后的保留率为78.4%。在这项工作中,我们证明了这种原位电化学制备多孔结构和混合价材料的有效性,我们希望这将有助于开发高性能电极材料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信