MI-Mamba: A hybrid motor imagery electroencephalograph classification model with Mamba's global scanning

IF 4.1 3区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Minghan Guo, Xu Han, Hongxing Liu, Jianing Zhu, Jie Zhang, Yanru Bai, Guangjian Ni
{"title":"MI-Mamba: A hybrid motor imagery electroencephalograph classification model with Mamba's global scanning","authors":"Minghan Guo, Xu Han, Hongxing Liu, Jianing Zhu, Jie Zhang, Yanru Bai, Guangjian Ni","doi":"10.1111/nyas.15288","DOIUrl":null,"url":null,"abstract":"Deep learning has revolutionized electroencephalograph (EEG) decoding, with convolutional neural networks (CNNs) being a predominant tool. However, CNNs struggle with long-term dependencies in sequential EEG data. Models like long short-term memory and transformers improve performance but still face challenges of computational efficiency and long sequences. Mamba, a state space model–based method, excels in modeling long sequences. To overcome the limitations of existing EEG decoding models and exploit Mamba's potential in EEG analysis, we propose MI-Mamba, a model integrating CNN with Mamba for motor imagery (MI) data decoding. MI-Mamba processes multi-channel EEG signals through a single convolutional layer to capture spatial features in the local temporal domain, followed by a Mamba module that processes global temporal features. A fully connected, layer-based classifier is used to derive classification results. Evaluated on two public MI datasets, MI-Mamba achieves 80.59% accuracy in the four-class MI task of the BCI Competition IV 2a dataset and 84.42% in the two-class task of the BCI Competition IV 2b dataset, while reducing parameter count by nearly six times compared to the most advanced previous models. These results highlight MI-Mamba's effectiveness in MI decoding and its potential as a new backbone for general EEG decoding.","PeriodicalId":8250,"journal":{"name":"Annals of the New York Academy of Sciences","volume":"74 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of the New York Academy of Sciences","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1111/nyas.15288","RegionNum":3,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning has revolutionized electroencephalograph (EEG) decoding, with convolutional neural networks (CNNs) being a predominant tool. However, CNNs struggle with long-term dependencies in sequential EEG data. Models like long short-term memory and transformers improve performance but still face challenges of computational efficiency and long sequences. Mamba, a state space model–based method, excels in modeling long sequences. To overcome the limitations of existing EEG decoding models and exploit Mamba's potential in EEG analysis, we propose MI-Mamba, a model integrating CNN with Mamba for motor imagery (MI) data decoding. MI-Mamba processes multi-channel EEG signals through a single convolutional layer to capture spatial features in the local temporal domain, followed by a Mamba module that processes global temporal features. A fully connected, layer-based classifier is used to derive classification results. Evaluated on two public MI datasets, MI-Mamba achieves 80.59% accuracy in the four-class MI task of the BCI Competition IV 2a dataset and 84.42% in the two-class task of the BCI Competition IV 2b dataset, while reducing parameter count by nearly six times compared to the most advanced previous models. These results highlight MI-Mamba's effectiveness in MI decoding and its potential as a new backbone for general EEG decoding.

Abstract Image

mi -曼巴:一种混合运动图像脑电图分类模型与曼巴的全球扫描
深度学习已经彻底改变了脑电图(EEG)解码,卷积神经网络(cnn)是一个主要的工具。然而,cnn在时序脑电图数据的长期依赖性方面存在问题。长短期记忆和变压器等模型提高了性能,但仍然面临计算效率和长序列的挑战。Mamba是一种基于状态空间模型的方法,擅长长序列的建模。为了克服现有脑电图解码模型的局限性,挖掘曼巴在脑电图分析中的潜力,我们提出了一种将CNN和曼巴神经网络集成在一起的运动图像(MI)数据解码模型MI-Mamba。MI-Mamba通过单个卷积层处理多通道脑电图信号,以捕获局部时域的空间特征,然后由一个Mamba模块处理全局时域特征。使用一个全连接的、基于层的分类器来获得分类结果。在两个公共MI数据集上进行评估,MI- mamba在BCI Competition IV 2a数据集的四类MI任务中达到80.59%的准确率,在BCI Competition IV 2b数据集的两类任务中达到84.42%的准确率,同时与之前最先进的模型相比,减少了近6倍的参数计数。这些结果突出了MI- mamba在MI解码中的有效性和作为一般EEG解码新骨干的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of the New York Academy of Sciences
Annals of the New York Academy of Sciences 综合性期刊-综合性期刊
CiteScore
11.00
自引率
1.90%
发文量
193
审稿时长
2-4 weeks
期刊介绍: Published on behalf of the New York Academy of Sciences, Annals of the New York Academy of Sciences provides multidisciplinary perspectives on research of current scientific interest with far-reaching implications for the wider scientific community and society at large. Each special issue assembles the best thinking of key contributors to a field of investigation at a time when emerging developments offer the promise of new insight. Individually themed, Annals special issues stimulate new ways to think about science by providing a neutral forum for discourse—within and across many institutions and fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信