Nanoengineering of ultrathin N-CQDs/Bi2WO6 S-scheme heterojunction for enhanced photodegradation of antibiotics as emerging contaminants: Mechanism insight and toxicity assessment
Haitao Ren, Shuochen Wang, Abdelkader Labidi, Bao Pan, Jianmin Luo, Chuanyi Wang
{"title":"Nanoengineering of ultrathin N-CQDs/Bi2WO6 S-scheme heterojunction for enhanced photodegradation of antibiotics as emerging contaminants: Mechanism insight and toxicity assessment","authors":"Haitao Ren, Shuochen Wang, Abdelkader Labidi, Bao Pan, Jianmin Luo, Chuanyi Wang","doi":"10.1016/j.seppur.2025.131717","DOIUrl":null,"url":null,"abstract":"Constructing low-cost and wide visible light response S-scheme heterojunctions is crucial for their photocatalytic efficiency and practical applications. Herein, a novel N-CQDs/UBWO composite was designed by combining nitrogen-doped carbon quantum dots (N-CQDs) obtained from bio-waste lignin with Bi<sub>2</sub>WO<sub>6</sub> ultrathin nanosheets (UBWO) using <em>in-situ</em> hydrothermal approach. The work function analyses, electron paramagnetic resonance (EPR) and <em>in-situ</em> X-ray photoelectron spectroscopy (XPS) evidenced an S-scheme charge transfer mechanism between N-CQD and UBWO during<!-- --> <!-- -->photocatalytic<!-- --> <!-- -->reactions, which endows the composite system a high photocatalytic redox and charge space separation capabilities. Besides, the up-conversion properties of N-CQDs render N-CQDs/UBWO composites an<!-- --> <!-- -->enhanced visible light response. Therefore, the optimized 3 wt%N-CQD/UBWO S-scheme heterojunction exhibited favorable tetracycline degradation performance, with a degradation efficiency of 85.0 % within 40 min of reaction time, and first-order rate constant (k) of 2.6 and 20.3 times greater than that of UBWO and N-CQDs, respectively. Furthermore, referring to Fukui function calculations and liquid chromatography-mass spectrometry (LC-MS), degraded products and three degradation routes for tetracycline were proposed. The results of the toxicity estimation software tool (T.E.S.T) and mung bean cultivation demonstrated that the intermediate products of tetracycline degradation are of low toxicity. This study provides insights into designing superior S-scheme heterojunctions using CQDs derived from waste biomass for green and efficient removal of antibiotics from wastewater.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"153 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131717","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Constructing low-cost and wide visible light response S-scheme heterojunctions is crucial for their photocatalytic efficiency and practical applications. Herein, a novel N-CQDs/UBWO composite was designed by combining nitrogen-doped carbon quantum dots (N-CQDs) obtained from bio-waste lignin with Bi2WO6 ultrathin nanosheets (UBWO) using in-situ hydrothermal approach. The work function analyses, electron paramagnetic resonance (EPR) and in-situ X-ray photoelectron spectroscopy (XPS) evidenced an S-scheme charge transfer mechanism between N-CQD and UBWO during photocatalytic reactions, which endows the composite system a high photocatalytic redox and charge space separation capabilities. Besides, the up-conversion properties of N-CQDs render N-CQDs/UBWO composites an enhanced visible light response. Therefore, the optimized 3 wt%N-CQD/UBWO S-scheme heterojunction exhibited favorable tetracycline degradation performance, with a degradation efficiency of 85.0 % within 40 min of reaction time, and first-order rate constant (k) of 2.6 and 20.3 times greater than that of UBWO and N-CQDs, respectively. Furthermore, referring to Fukui function calculations and liquid chromatography-mass spectrometry (LC-MS), degraded products and three degradation routes for tetracycline were proposed. The results of the toxicity estimation software tool (T.E.S.T) and mung bean cultivation demonstrated that the intermediate products of tetracycline degradation are of low toxicity. This study provides insights into designing superior S-scheme heterojunctions using CQDs derived from waste biomass for green and efficient removal of antibiotics from wastewater.
期刊介绍:
Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.