Highly selective and rapid sequential degradation of venlafaxine-class antidepressants using a novel BiOCl-based two-dimensional molecularly imprinted photocatalyst

IF 8.1 1区 工程技术 Q1 ENGINEERING, CHEMICAL
Lin Liu, Songsong Zhi, Runan Chen, Yang Yang, Chenshi Luo, Pengfei Liang, Yongli Liu, Guifen Zhu
{"title":"Highly selective and rapid sequential degradation of venlafaxine-class antidepressants using a novel BiOCl-based two-dimensional molecularly imprinted photocatalyst","authors":"Lin Liu, Songsong Zhi, Runan Chen, Yang Yang, Chenshi Luo, Pengfei Liang, Yongli Liu, Guifen Zhu","doi":"10.1016/j.seppur.2025.131777","DOIUrl":null,"url":null,"abstract":"Photocatalytic degradation is an effective technology for the removal of organic compounds. However, the lack of selectivity limits its practical application for harmful substances in complex systems. Herein, a novel molecularly imprinted photocatalyst (MI-BiOCl) was prepared using two-dimensional nanosheet BiOCl as a matrix. Based on the superior degradation activity and charge carrier transfer of BiOCl, along with an imprinting layer with selectivity, MI-BiOCl can selectively adsorb and rapidly and sequentially degrade venlafaxine (VEN) and its analogue fluoxetine (FLU) in mixtures. MI-BiOCl can adsorb 32.27 mg/g of VEN within 5 min, with an imprinting factor of 4.72. Within pH range of 3–9, the degradation efficiency of VEN by MI-BiOCl remained above 98.8 %, unaffected by coexisting humic acid, and after four cycles, it was still higher than 98 %. Moreover, over 88.8 % of VEN and 99.3 % of FLU in municipal wastewater were degraded by MI-BiOCl, and the degradation intermediates tended to be non-toxic. DFT simulations verified that the highly selective degradation was due to the synergistic effect of imprinting sites, catalytic active sites and non-covalent bonding forces including van der Waals, hydrogen bonding and electrostatic interaction between MI-BiOCl and VEN and FLU. FLU, with stronger binding affinity, has the advantage of being preferentially degraded. The strategy provides a method for the highly selective degradation of drug pollutants in complex media.","PeriodicalId":427,"journal":{"name":"Separation and Purification Technology","volume":"54 1","pages":""},"PeriodicalIF":8.1000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Separation and Purification Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.seppur.2025.131777","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Photocatalytic degradation is an effective technology for the removal of organic compounds. However, the lack of selectivity limits its practical application for harmful substances in complex systems. Herein, a novel molecularly imprinted photocatalyst (MI-BiOCl) was prepared using two-dimensional nanosheet BiOCl as a matrix. Based on the superior degradation activity and charge carrier transfer of BiOCl, along with an imprinting layer with selectivity, MI-BiOCl can selectively adsorb and rapidly and sequentially degrade venlafaxine (VEN) and its analogue fluoxetine (FLU) in mixtures. MI-BiOCl can adsorb 32.27 mg/g of VEN within 5 min, with an imprinting factor of 4.72. Within pH range of 3–9, the degradation efficiency of VEN by MI-BiOCl remained above 98.8 %, unaffected by coexisting humic acid, and after four cycles, it was still higher than 98 %. Moreover, over 88.8 % of VEN and 99.3 % of FLU in municipal wastewater were degraded by MI-BiOCl, and the degradation intermediates tended to be non-toxic. DFT simulations verified that the highly selective degradation was due to the synergistic effect of imprinting sites, catalytic active sites and non-covalent bonding forces including van der Waals, hydrogen bonding and electrostatic interaction between MI-BiOCl and VEN and FLU. FLU, with stronger binding affinity, has the advantage of being preferentially degraded. The strategy provides a method for the highly selective degradation of drug pollutants in complex media.

Abstract Image

高选择性和快速顺序降解文拉法辛类抗抑郁药使用新型biocl为基础的二维分子印迹光催化剂
光催化降解是一种有效的去除有机化合物的技术。然而,选择性的不足限制了其在复杂体系中对有害物质的实际应用。本文以二维纳米片BiOCl为基质制备了一种新型分子印迹光催化剂(MI-BiOCl)。基于BiOCl优越的降解活性和电荷载体转移,加上具有选择性的印迹层,MI-BiOCl可以选择性吸附并快速顺序降解混合物中的文拉法辛(VEN)及其类似物氟西汀(FLU)。MI-BiOCl可在5 min内吸附32.27 mg/g的VEN,印迹因子为4.72。在3 ~ 9的pH范围内,MI-BiOCl对VEN的降解效率保持在98.8 %以上,不受腐植酸共存的影响,4个循环后仍高于98 %。此外,MI-BiOCl可降解城市污水中超过88.8% %的VEN和99.3% %的FLU,且降解中间体趋于无毒性。DFT模拟验证了高选择性降解是由于印迹位点、催化活性位点以及MI-BiOCl与VEN和FLU之间的非共价键作用力(包括范德华、氢键和静电相互作用)的协同作用。流感具有较强的结合亲和力,具有优先降解的优势。该策略为复杂介质中药物污染物的高选择性降解提供了一种方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Separation and Purification Technology
Separation and Purification Technology 工程技术-工程:化工
CiteScore
14.00
自引率
12.80%
发文量
2347
审稿时长
43 days
期刊介绍: Separation and Purification Technology is a premier journal committed to sharing innovative methods for separation and purification in chemical and environmental engineering, encompassing both homogeneous solutions and heterogeneous mixtures. Our scope includes the separation and/or purification of liquids, vapors, and gases, as well as carbon capture and separation techniques. However, it's important to note that methods solely intended for analytical purposes are not within the scope of the journal. Additionally, disciplines such as soil science, polymer science, and metallurgy fall outside the purview of Separation and Purification Technology. Join us in advancing the field of separation and purification methods for sustainable solutions in chemical and environmental engineering.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信