{"title":"Joint plant-spraypoint detector with ConvNeXt modules and HistMatch normalization","authors":"Jonathan Ford, Edmund Sadgrove, David Paul","doi":"10.1007/s11119-024-10208-y","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Context</h3><p>Serrated tussock (<i>Nassella trichotoma</i>) is a weed of national significance in Australia which offers little to no nutritional value to livestock, and has the potential to reduce carrying capacity and agricultural return of infested pastures.</p><h3 data-test=\"abstract-sub-heading\">Aims</h3><p>The aim of this study was to adapt existing Convolutional Neural Networks (CNNs) for plant segmentation and spraypoint detection in the challenging environments of pastures.</p><h3 data-test=\"abstract-sub-heading\">Methods</h3><p>CNNs that were designed for joint plant and stem segmentation in crop fields were repurposed for dual-task applications in pastures. Given the poor performance of these models in complex pasture environments, a new model drawing inspiration from the recently proposed ConvNeXt was developed, tested for its effectiveness on unseen field data, and enhanced with a novel normalization technique, called HistMatch.</p><h3 data-test=\"abstract-sub-heading\">Key results</h3><p>Experimentation demonstrated that unlike pre-existing models, which were designed for the simpler environments encountered in early-stage crop fields, our model was able to generalize well to growing conditions not seen during training, achieving 0.807 mIoU and 0.796 F1-score for the plant and spraypoint tasks respectively. This is in comparison to pre-existing models, which achieved 0.270 - 0.454 mIoU and 0.073 - 0.496 F1-score for the same tasks. These results were further improved to 0.854 mIoU and 0.806 F1-score using HistMatch normalization. In spite of greater model complexity, our model had a inference time of 15.7 ms which was comparable to pre-existing models, and suitable for real-time applications.</p><h3 data-test=\"abstract-sub-heading\">Conclusion</h3><p>Models with greater complexity are required for the relatively complex environments encountered in pastures, but this greater complexity need not come at the expense of real time capability. HistMatch normalization can improve model accuracy, and is particularly effective in cases where models are struggling to generalize well to testing conditions that vary significantly from those seen during training.</p><h3 data-test=\"abstract-sub-heading\">Implications and impacts</h3><p>The successful adaptation and improvement of CNNs for weed management in pastures could significantly reduce the reliance on blanket herbicide application. HistMatch normalization could also be considered for other agricultural applications, including weed management and disease detection in crop fields and orchards.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"32 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-024-10208-y","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Context
Serrated tussock (Nassella trichotoma) is a weed of national significance in Australia which offers little to no nutritional value to livestock, and has the potential to reduce carrying capacity and agricultural return of infested pastures.
Aims
The aim of this study was to adapt existing Convolutional Neural Networks (CNNs) for plant segmentation and spraypoint detection in the challenging environments of pastures.
Methods
CNNs that were designed for joint plant and stem segmentation in crop fields were repurposed for dual-task applications in pastures. Given the poor performance of these models in complex pasture environments, a new model drawing inspiration from the recently proposed ConvNeXt was developed, tested for its effectiveness on unseen field data, and enhanced with a novel normalization technique, called HistMatch.
Key results
Experimentation demonstrated that unlike pre-existing models, which were designed for the simpler environments encountered in early-stage crop fields, our model was able to generalize well to growing conditions not seen during training, achieving 0.807 mIoU and 0.796 F1-score for the plant and spraypoint tasks respectively. This is in comparison to pre-existing models, which achieved 0.270 - 0.454 mIoU and 0.073 - 0.496 F1-score for the same tasks. These results were further improved to 0.854 mIoU and 0.806 F1-score using HistMatch normalization. In spite of greater model complexity, our model had a inference time of 15.7 ms which was comparable to pre-existing models, and suitable for real-time applications.
Conclusion
Models with greater complexity are required for the relatively complex environments encountered in pastures, but this greater complexity need not come at the expense of real time capability. HistMatch normalization can improve model accuracy, and is particularly effective in cases where models are struggling to generalize well to testing conditions that vary significantly from those seen during training.
Implications and impacts
The successful adaptation and improvement of CNNs for weed management in pastures could significantly reduce the reliance on blanket herbicide application. HistMatch normalization could also be considered for other agricultural applications, including weed management and disease detection in crop fields and orchards.
期刊介绍:
Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming.
There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to:
Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc.
Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc.
Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc.
Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc.
Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc.
Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.