Enhanced visual detection of litchi fruit in complex natural environments based on unmanned aerial vehicle (UAV) remote sensing

IF 5.4 2区 农林科学 Q1 AGRICULTURE, MULTIDISCIPLINARY
Changjiang Liang, Juntao Liang, Weiguang Yang, Weiyi Ge, Jing Zhao, Zhaorong Li, Shudai Bai, Jiawen Fan, Yubin Lan, Yongbing Long
{"title":"Enhanced visual detection of litchi fruit in complex natural environments based on unmanned aerial vehicle (UAV) remote sensing","authors":"Changjiang Liang, Juntao Liang, Weiguang Yang, Weiyi Ge, Jing Zhao, Zhaorong Li, Shudai Bai, Jiawen Fan, Yubin Lan, Yongbing Long","doi":"10.1007/s11119-025-10220-w","DOIUrl":null,"url":null,"abstract":"<p>Rapid and accurate detection of fruits is crucial for estimating yields and making scientific decisions in litchi orchards. However, litchis grow in complex natural environments, characterized by variable lighting, severe occlusion from branches and leaves, small fruit sizes, and dense overlapping, all of which pose significant challenges for accurate detection. This paper addressed this problem by proposing a method that combines unmanned aerial vehicle (UAV) remote sensing and deep learning for litchi detection. A remote sensing image dataset comprising litchi fruit was first constructed. Subsequently, an improved algorithm, YOLOv7-MSRSF, was developed. Experimental results demonstrated that YOLOv7-MSRSF’s mean average precision (mAP) reached 96.1%, outperforming YOLOv7 and pure transformer algorithms by 3.7% and 20.6%, respectively. Tests on randomly selected 24 images demonstrated that integrating the Swin-transformer module into YOLOv7 improved litchi fruit detection accuracy under severe occlusion, dense overlapping, and variable lighting by 19.55%, 6.63%, and 13.94%, respectively. YOLOv7-MSRSF showed further improvements in these three complex conditions, with detection accuracy increasing by 26.99%, 9.82%, and 18.68%, respectively, reaching 89.16%, 97.79%, and 95.56%. Furthermore, the Real-ESRGAN algorithm significantly enhanced the YOLOv7-MSRSF model’s recognition accuracy of objects in low-resolution images captured by high-altitude drones. The average detected accuracy of three images collected at 27.5 m above the canopy reached a high value of 82.2%, which was improved by 70.6% compared with that (11.6%) before super-resolution processing. The proposed method offered valuable guidance for detecting small, dense agricultural objects in large-scale, complex natural environments.</p>","PeriodicalId":20423,"journal":{"name":"Precision Agriculture","volume":"57 1","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Agriculture","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s11119-025-10220-w","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid and accurate detection of fruits is crucial for estimating yields and making scientific decisions in litchi orchards. However, litchis grow in complex natural environments, characterized by variable lighting, severe occlusion from branches and leaves, small fruit sizes, and dense overlapping, all of which pose significant challenges for accurate detection. This paper addressed this problem by proposing a method that combines unmanned aerial vehicle (UAV) remote sensing and deep learning for litchi detection. A remote sensing image dataset comprising litchi fruit was first constructed. Subsequently, an improved algorithm, YOLOv7-MSRSF, was developed. Experimental results demonstrated that YOLOv7-MSRSF’s mean average precision (mAP) reached 96.1%, outperforming YOLOv7 and pure transformer algorithms by 3.7% and 20.6%, respectively. Tests on randomly selected 24 images demonstrated that integrating the Swin-transformer module into YOLOv7 improved litchi fruit detection accuracy under severe occlusion, dense overlapping, and variable lighting by 19.55%, 6.63%, and 13.94%, respectively. YOLOv7-MSRSF showed further improvements in these three complex conditions, with detection accuracy increasing by 26.99%, 9.82%, and 18.68%, respectively, reaching 89.16%, 97.79%, and 95.56%. Furthermore, the Real-ESRGAN algorithm significantly enhanced the YOLOv7-MSRSF model’s recognition accuracy of objects in low-resolution images captured by high-altitude drones. The average detected accuracy of three images collected at 27.5 m above the canopy reached a high value of 82.2%, which was improved by 70.6% compared with that (11.6%) before super-resolution processing. The proposed method offered valuable guidance for detecting small, dense agricultural objects in large-scale, complex natural environments.

基于无人机(UAV)遥感的复杂自然环境荔枝果视觉检测增强
快速准确的果实检测对荔枝果园产量估算和科学决策至关重要。然而,荔枝生长在复杂的自然环境中,光照多变,枝叶遮挡严重,果实尺寸小,重叠密集,这些都给准确检测带来了很大的挑战。针对这一问题,本文提出了一种结合无人机遥感和深度学习的荔枝检测方法。首先构建了包含荔枝果实的遥感影像数据集。随后,开发了一种改进的算法YOLOv7-MSRSF。实验结果表明,YOLOv7- msrsf的平均精度(mAP)达到96.1%,分别比YOLOv7和纯变压器算法高3.7%和20.6%。随机选取24张图像进行测试,结果表明,将swwin -transformer模块集成到YOLOv7中,在严重遮挡、密集重叠和可变光照条件下,荔枝果检测准确率分别提高了19.55%、6.63%和13.94%。在这三种复杂条件下,YOLOv7-MSRSF的检测准确率分别提高了26.99%、9.82%和18.68%,分别达到89.16%、97.79%和95.56%。此外,Real-ESRGAN算法显著提高了YOLOv7-MSRSF模型对高空无人机捕获的低分辨率图像中目标的识别精度。在冠层上方27.5 m处采集的3幅影像平均检测精度达到82.2%的高值,较超分辨率处理前的11.6%提高了70.6%。该方法为在大尺度、复杂的自然环境中检测小型、密集的农业目标提供了有价值的指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Precision Agriculture
Precision Agriculture 农林科学-农业综合
CiteScore
12.30
自引率
8.10%
发文量
103
审稿时长
>24 weeks
期刊介绍: Precision Agriculture promotes the most innovative results coming from the research in the field of precision agriculture. It provides an effective forum for disseminating original and fundamental research and experience in the rapidly advancing area of precision farming. There are many topics in the field of precision agriculture; therefore, the topics that are addressed include, but are not limited to: Natural Resources Variability: Soil and landscape variability, digital elevation models, soil mapping, geostatistics, geographic information systems, microclimate, weather forecasting, remote sensing, management units, scale, etc. Managing Variability: Sampling techniques, site-specific nutrient and crop protection chemical recommendation, crop quality, tillage, seed density, seed variety, yield mapping, remote sensing, record keeping systems, data interpretation and use, crops (corn, wheat, sugar beets, potatoes, peanut, cotton, vegetables, etc.), management scale, etc. Engineering Technology: Computers, positioning systems, DGPS, machinery, tillage, planting, nutrient and crop protection implements, manure, irrigation, fertigation, yield monitor and mapping, soil physical and chemical characteristic sensors, weed/pest mapping, etc. Profitability: MEY, net returns, BMPs, optimum recommendations, crop quality, technology cost, sustainability, social impacts, marketing, cooperatives, farm scale, crop type, etc. Environment: Nutrient, crop protection chemicals, sediments, leaching, runoff, practices, field, watershed, on/off farm, artificial drainage, ground water, surface water, etc. Technology Transfer: Skill needs, education, training, outreach, methods, surveys, agri-business, producers, distance education, Internet, simulations models, decision support systems, expert systems, on-farm experimentation, partnerships, quality of rural life, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信