Sphingolipid remodeling in the plasma membrane is essential for osmotic stress tolerance in Arabidopsis

IF 6.5 1区 生物学 Q1 PLANT SCIENCES
Yong-Kang Li, Yu-Meng Zhang, Guang-Yi Dai, Yi-Li Chen, Ding-Kang Chen, Nan Yao
{"title":"Sphingolipid remodeling in the plasma membrane is essential for osmotic stress tolerance in Arabidopsis","authors":"Yong-Kang Li, Yu-Meng Zhang, Guang-Yi Dai, Yi-Li Chen, Ding-Kang Chen, Nan Yao","doi":"10.1093/plphys/kiaf031","DOIUrl":null,"url":null,"abstract":"Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear. Here, we characterized the role of the glucosylceramidase (GCD) AtGCD1 (encoded by At1g33700) in sphingolipid remodeling and acclimation to osmotic stress in Arabidopsis (Arabidopsis thaliana). AtGCD1–AtGCD4 are Arabidopsis homologs of human nonlysosomal glucosylceramidase. We determined that AtGCD1 functions as a glucosylceramidase and localizes to the plasma membrane and that recombinant AtGCD1 has no substrate preference for acyl chain length. Moreover, AtGCD1 and AtGCD3 (At4g10060) are essential for osmotic stress tolerance in Arabidopsis. In cells treated with mannitol, AtGCD1 and AtGCD3 hydrolyzed glucosylceramides to ceramides, leading to decreased glucosylceramide contents and increased glycosyl inositol phosphoceramide contents. We observed a substantial change in the molecular order of lipids and membrane tension at the plasma membrane of the Arabidopsis gcd1 gcd3 double mutant, indicating that glucosylceramidases compensate for changes in membrane properties to stabilize the membrane during osmotic stress. Notably, we found that loss of GCD1 and GCD3 enhanced plant resistance to beet armyworm (Spodoptera exigua). Our results suggest that sphingolipid remodeling regulates the physicochemical properties of cellular membranes during plant stress responses.","PeriodicalId":20101,"journal":{"name":"Plant Physiology","volume":"1 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/plphys/kiaf031","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Osmotic stress caused by drought, salinity, or cold conditions is an important abiotic factor that decreases membrane integrity and causes cell death, thus decreasing plant growth and productivity. Remodeling cell membrane composition via lipid turnover can counter the loss of membrane integrity and cell death caused by osmotic stress. Sphingolipids are important components of eukaryotic membrane systems; however, how sphingolipids participate in plant responses to osmotic stress remains unclear. Here, we characterized the role of the glucosylceramidase (GCD) AtGCD1 (encoded by At1g33700) in sphingolipid remodeling and acclimation to osmotic stress in Arabidopsis (Arabidopsis thaliana). AtGCD1–AtGCD4 are Arabidopsis homologs of human nonlysosomal glucosylceramidase. We determined that AtGCD1 functions as a glucosylceramidase and localizes to the plasma membrane and that recombinant AtGCD1 has no substrate preference for acyl chain length. Moreover, AtGCD1 and AtGCD3 (At4g10060) are essential for osmotic stress tolerance in Arabidopsis. In cells treated with mannitol, AtGCD1 and AtGCD3 hydrolyzed glucosylceramides to ceramides, leading to decreased glucosylceramide contents and increased glycosyl inositol phosphoceramide contents. We observed a substantial change in the molecular order of lipids and membrane tension at the plasma membrane of the Arabidopsis gcd1 gcd3 double mutant, indicating that glucosylceramidases compensate for changes in membrane properties to stabilize the membrane during osmotic stress. Notably, we found that loss of GCD1 and GCD3 enhanced plant resistance to beet armyworm (Spodoptera exigua). Our results suggest that sphingolipid remodeling regulates the physicochemical properties of cellular membranes during plant stress responses.
质膜鞘脂重塑对拟南芥的渗透胁迫耐受性至关重要
由干旱、盐度或寒冷条件引起的渗透胁迫是一个重要的非生物因素,它会降低膜的完整性,导致细胞死亡,从而降低植物的生长和生产力。通过脂质转换重塑细胞膜组成可以对抗渗透胁迫引起的膜完整性丧失和细胞死亡。鞘脂是真核生物膜系统的重要组成部分;然而,鞘脂如何参与植物对渗透胁迫的反应尚不清楚。本文研究了糖基神经酰胺酶(GCD) AtGCD1(由At1g33700编码)在拟南芥鞘脂重塑和渗透胁迫适应中的作用。AtGCD1-AtGCD4是拟南芥人类非溶酶体糖基神经酰胺酶的同源物。我们确定AtGCD1作为糖基神经酰胺酶起作用,定位于质膜上,重组AtGCD1对酰基链长度没有底物偏好。此外,AtGCD1和AtGCD3 (At4g10060)对拟南芥的渗透胁迫耐受至关重要。在甘露醇处理的细胞中,AtGCD1和AtGCD3水解糖基神经酰胺为神经酰胺,导致糖基神经酰胺含量降低,糖基肌醇磷酸神经酰胺含量增加。我们观察到在拟南芥gcd1 gcd3双突变体的质膜上脂质分子顺序和膜张力发生了实质性的变化,这表明糖基神经酰胺酶补偿了膜性质的变化,以在渗透胁迫下稳定膜。值得注意的是,我们发现GCD1和GCD3的缺失增强了植物对甜菜粘虫(Spodoptera exigua)的抗性。我们的研究结果表明鞘脂重塑调节了植物在逆境反应中细胞膜的理化性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Physiology
Plant Physiology 生物-植物科学
CiteScore
12.20
自引率
5.40%
发文量
535
审稿时长
2.3 months
期刊介绍: Plant Physiology® is a distinguished and highly respected journal with a rich history dating back to its establishment in 1926. It stands as a leading international publication in the field of plant biology, covering a comprehensive range of topics from the molecular and structural aspects of plant life to systems biology and ecophysiology. Recognized as the most highly cited journal in plant sciences, Plant Physiology® is a testament to its commitment to excellence and the dissemination of groundbreaking research. As the official publication of the American Society of Plant Biologists, Plant Physiology® upholds rigorous peer-review standards, ensuring that the scientific community receives the highest quality research. The journal releases 12 issues annually, providing a steady stream of new findings and insights to its readership.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信