{"title":"Highly Efficient Removal of Per- and Polyfluoroalkyl Substances by Extrusion-regenerated Aminated Polyurethane Sponges","authors":"Xinhao Wang, Hanyang Chen, Wenran Wang, Xiufang Shen, Jiabao Wang, Sen Chen, Xueru Yu, Chew Tin Lee, Zhanghao Chen, Cheng Gu","doi":"10.1016/j.watres.2025.123189","DOIUrl":null,"url":null,"abstract":"Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic compounds widely detected in the environments. Due to their chemical stability, physical adsorption has emerged as one of the most promising techniques for remediating PFAS-containing wastewater, while some newly synthesized functional absorbents in powder form suffer from separation issues. Inspired by mussel biology, we have successfully synthesized a porous spongy absorbent termed aminated polyurethane (PU-PDA-PANI) with over 99.5% removal efficiency for initial 10 mg L<sup>−1</sup> perfluorooctanoic acid (PFOA), corresponding to the maximum adsorption capacity of 1.42 g g<sup>−1</sup>, which was superior to the ion exchange resin (Purolite® PFA694E, 0.764 g g<sup>−1</sup>). In addition to PFOA, PU-PDA-PANI also showed excellent removal efficiencies for other typical PFAS (i.e. perfluorooctane sulfonates, perfluorobutyric acid, perfluorooctane-1,8-dioic acid, hexafluoropropylene oxide trimer acid, etc), and the adsorption processes resistant to pH changes and co-existing environmental matrixes. Furthermore, PU-PDA-PANI can be readily reused and regenerated by coupling extrusion and elution procedures. The adsorption mechanism of electrostatic, hydrogen bond and hydrophobic synergistic interaction was further proposed with the support of theoretical calculation. In conclusion, this study develops an efficient and recyclable PFAS adsorbent and proposes some new insights for the design of PFAS-selective adsorbents.","PeriodicalId":443,"journal":{"name":"Water Research","volume":"27 1","pages":""},"PeriodicalIF":11.4000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1016/j.watres.2025.123189","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Per- and polyfluoroalkyl substances (PFAS) are a class of persistent organic compounds widely detected in the environments. Due to their chemical stability, physical adsorption has emerged as one of the most promising techniques for remediating PFAS-containing wastewater, while some newly synthesized functional absorbents in powder form suffer from separation issues. Inspired by mussel biology, we have successfully synthesized a porous spongy absorbent termed aminated polyurethane (PU-PDA-PANI) with over 99.5% removal efficiency for initial 10 mg L−1 perfluorooctanoic acid (PFOA), corresponding to the maximum adsorption capacity of 1.42 g g−1, which was superior to the ion exchange resin (Purolite® PFA694E, 0.764 g g−1). In addition to PFOA, PU-PDA-PANI also showed excellent removal efficiencies for other typical PFAS (i.e. perfluorooctane sulfonates, perfluorobutyric acid, perfluorooctane-1,8-dioic acid, hexafluoropropylene oxide trimer acid, etc), and the adsorption processes resistant to pH changes and co-existing environmental matrixes. Furthermore, PU-PDA-PANI can be readily reused and regenerated by coupling extrusion and elution procedures. The adsorption mechanism of electrostatic, hydrogen bond and hydrophobic synergistic interaction was further proposed with the support of theoretical calculation. In conclusion, this study develops an efficient and recyclable PFAS adsorbent and proposes some new insights for the design of PFAS-selective adsorbents.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.