Xinwei Li, Iliya Esin, Youngjoon Han, Yincheng Liu, Hengdi Zhao, Honglie Ning, Cora Barrett, Jun-Yi Shan, Kyle Seyler, Gang Cao, Gil Refael, David Hsieh
{"title":"Time-hidden magnetic order in a multi-orbital Mott insulator","authors":"Xinwei Li, Iliya Esin, Youngjoon Han, Yincheng Liu, Hengdi Zhao, Honglie Ning, Cora Barrett, Jun-Yi Shan, Kyle Seyler, Gang Cao, Gil Refael, David Hsieh","doi":"10.1038/s41567-024-02752-1","DOIUrl":null,"url":null,"abstract":"<p>Photo-excited quantum materials can be driven into thermally inaccessible metastable states that exhibit structural, charge, spin, topological and superconducting orders. Metastable states typically emerge on timescales set by the intrinsic electronic and phononic energy scales, ranging from femtoseconds to picoseconds, and can persist for weeks. Therefore, studies have primarily focused on ultrafast or quasi-static limits, leaving the intermediate time window less explored. Here we reveal a metastable state with broken glide-plane symmetry in photo-doped Ca<sub>2</sub>RuO<sub>4</sub> using time-resolved optical second-harmonic generation and birefringence measurements. We find that the metastable state appears long after intralayer antiferromagnetic order has melted and photo-carriers have recombined. Its properties are distinct from all known states in the equilibrium phase diagram and are consistent with intralayer ferromagnetic order. Furthermore, model Hamiltonian calculations reveal that a non-thermal trajectory to this state can be accessed via photo-doping. Our results expand the search space for out-of-equilibrium electronic matter to metastable states emerging at intermediate timescales.</p>","PeriodicalId":19100,"journal":{"name":"Nature Physics","volume":"74 1","pages":""},"PeriodicalIF":17.6000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41567-024-02752-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Photo-excited quantum materials can be driven into thermally inaccessible metastable states that exhibit structural, charge, spin, topological and superconducting orders. Metastable states typically emerge on timescales set by the intrinsic electronic and phononic energy scales, ranging from femtoseconds to picoseconds, and can persist for weeks. Therefore, studies have primarily focused on ultrafast or quasi-static limits, leaving the intermediate time window less explored. Here we reveal a metastable state with broken glide-plane symmetry in photo-doped Ca2RuO4 using time-resolved optical second-harmonic generation and birefringence measurements. We find that the metastable state appears long after intralayer antiferromagnetic order has melted and photo-carriers have recombined. Its properties are distinct from all known states in the equilibrium phase diagram and are consistent with intralayer ferromagnetic order. Furthermore, model Hamiltonian calculations reveal that a non-thermal trajectory to this state can be accessed via photo-doping. Our results expand the search space for out-of-equilibrium electronic matter to metastable states emerging at intermediate timescales.
期刊介绍:
Nature Physics is dedicated to publishing top-tier original research in physics with a fair and rigorous review process. It provides high visibility and access to a broad readership, maintaining high standards in copy editing and production, ensuring rapid publication, and maintaining independence from academic societies and other vested interests.
The journal presents two main research paper formats: Letters and Articles. Alongside primary research, Nature Physics serves as a central source for valuable information within the physics community through Review Articles, News & Views, Research Highlights covering crucial developments across the physics literature, Commentaries, Book Reviews, and Correspondence.