Electrochemical hydrogenation and hydrogenolysis of furfural on copper electrode enhanced by surface environment modulation with metal–organic framework
{"title":"Electrochemical hydrogenation and hydrogenolysis of furfural on copper electrode enhanced by surface environment modulation with metal–organic framework","authors":"Yu-Shuo Lee, Chi-Wei Huang, Chun-Ting Yueh, Chung-Wei Kung, Wen-Yueh Yu","doi":"10.1016/j.cej.2025.159800","DOIUrl":null,"url":null,"abstract":"Recently advancements in electrochemical hydrogenation and hydrogenolysis (ECH) have sought to improve the sustainable production of biochemicals. Cu foil has been extensively investigated in the ECH reaction of furfural (FF) into furfuryl alcohol (FA) and 2-methylfuran (MF) while its catalytic performance is still impeded by its intrinsically flat surface. In this study, we propose a facile approach to improve the ECH reaction of FF over Cu foil by surface modifications with MOF-808, a Zr-based metal–organic framework with abundant terminal –OH/OH<sub>2</sub> groups. The coordinatively unsaturated Zr site (Zr-CUS) present in framework could act as Lewis acid center to interact with the carbonyl oxygen of FF, thus facilitating the diffusion of FF from the electrolyte solution to near-surface region of Cu electrode. The terminal –OH/OH<sub>2</sub> functional groups on the node could serve as proton donors and/or acceptors, thereby creating the proton-rich environment at the surface of Cu electrode. The findings in this study demonstrate an effective strategy to enhance the electrocatalytic performance of metal foil electrode <em>via</em> the modifications with rationally designed MOF overlayer.","PeriodicalId":270,"journal":{"name":"Chemical Engineering Journal","volume":"27 1","pages":""},"PeriodicalIF":13.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.cej.2025.159800","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Recently advancements in electrochemical hydrogenation and hydrogenolysis (ECH) have sought to improve the sustainable production of biochemicals. Cu foil has been extensively investigated in the ECH reaction of furfural (FF) into furfuryl alcohol (FA) and 2-methylfuran (MF) while its catalytic performance is still impeded by its intrinsically flat surface. In this study, we propose a facile approach to improve the ECH reaction of FF over Cu foil by surface modifications with MOF-808, a Zr-based metal–organic framework with abundant terminal –OH/OH2 groups. The coordinatively unsaturated Zr site (Zr-CUS) present in framework could act as Lewis acid center to interact with the carbonyl oxygen of FF, thus facilitating the diffusion of FF from the electrolyte solution to near-surface region of Cu electrode. The terminal –OH/OH2 functional groups on the node could serve as proton donors and/or acceptors, thereby creating the proton-rich environment at the surface of Cu electrode. The findings in this study demonstrate an effective strategy to enhance the electrocatalytic performance of metal foil electrode via the modifications with rationally designed MOF overlayer.
期刊介绍:
The Chemical Engineering Journal is an international research journal that invites contributions of original and novel fundamental research. It aims to provide an international platform for presenting original fundamental research, interpretative reviews, and discussions on new developments in chemical engineering. The journal welcomes papers that describe novel theory and its practical application, as well as those that demonstrate the transfer of techniques from other disciplines. It also welcomes reports on carefully conducted experimental work that is soundly interpreted. The main focus of the journal is on original and rigorous research results that have broad significance. The Catalysis section within the Chemical Engineering Journal focuses specifically on Experimental and Theoretical studies in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. These studies have industrial impact on various sectors such as chemicals, energy, materials, foods, healthcare, and environmental protection.