{"title":"Controllable synthesis of layered double hydroxides: From macroscopic morphology to microscopic coordination at the atomic level","authors":"Sha Bai, Guihao Liu, Tianyang Shen, Zhaohui Wu, Wei Chen, Yu-Fei Song","doi":"10.1016/j.ccr.2025.216437","DOIUrl":null,"url":null,"abstract":"Layered double hydroxides (LDHs), as a typical inorganic two-dimensional layered material, have been widely studied in the fields of photoelectrocatalysis, energy, and environment due to their unique layered structure and excellent catalytic activity. In addition, the flexible and adjustable laminate composition of LDHs, the flexible anion exchange and column-supported exfoliation of the domain-limited space allow the reactivity of LDHs to be modulated with the changes in their composition, size, thickness, morphology, etc. Therefore, the precise synthesis of LDHs from macroscopic to microscopic is the key to promoting their development in fundamental science and industrial application. Herein, we summarize the controllable synthesis methods of LDHs in recent years, including the precise tuning strategies of macroscopic structure, such as morphology, size, thickness, etc. Furthermore, controllable preparation strategies of coordination structure at the atomic level, including the intercalation ions, coordination number, and coordination environment were also reviewed. Meanwhile, the application of synthesized LDHs with specific structures in photocatalysis, batteries, environment, and other fields has also been mentioned. Finally, the major challenges and prospects of LDHs are discussed in terms of further improving the controllability of precise synthesis.","PeriodicalId":289,"journal":{"name":"Coordination Chemistry Reviews","volume":"57 1","pages":""},"PeriodicalIF":20.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Coordination Chemistry Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ccr.2025.216437","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
Layered double hydroxides (LDHs), as a typical inorganic two-dimensional layered material, have been widely studied in the fields of photoelectrocatalysis, energy, and environment due to their unique layered structure and excellent catalytic activity. In addition, the flexible and adjustable laminate composition of LDHs, the flexible anion exchange and column-supported exfoliation of the domain-limited space allow the reactivity of LDHs to be modulated with the changes in their composition, size, thickness, morphology, etc. Therefore, the precise synthesis of LDHs from macroscopic to microscopic is the key to promoting their development in fundamental science and industrial application. Herein, we summarize the controllable synthesis methods of LDHs in recent years, including the precise tuning strategies of macroscopic structure, such as morphology, size, thickness, etc. Furthermore, controllable preparation strategies of coordination structure at the atomic level, including the intercalation ions, coordination number, and coordination environment were also reviewed. Meanwhile, the application of synthesized LDHs with specific structures in photocatalysis, batteries, environment, and other fields has also been mentioned. Finally, the major challenges and prospects of LDHs are discussed in terms of further improving the controllability of precise synthesis.
期刊介绍:
Coordination Chemistry Reviews offers rapid publication of review articles on current and significant topics in coordination chemistry, encompassing organometallic, supramolecular, theoretical, and bioinorganic chemistry. It also covers catalysis, materials chemistry, and metal-organic frameworks from a coordination chemistry perspective. Reviews summarize recent developments or discuss specific techniques, welcoming contributions from both established and emerging researchers.
The journal releases special issues on timely subjects, including those featuring contributions from specific regions or conferences. Occasional full-length book articles are also featured. Additionally, special volumes cover annual reviews of main group chemistry, transition metal group chemistry, and organometallic chemistry. These comprehensive reviews are vital resources for those engaged in coordination chemistry, further establishing Coordination Chemistry Reviews as a hub for insightful surveys in inorganic and physical inorganic chemistry.