High-Entropy Thermoelectric Materials: Advances, Challenges, and Future Opportunities

IF 19.3 1区 材料科学 Q1 CHEMISTRY, PHYSICAL
Shixuan Liu, Di Wu, Minghua Kong, Wu Wang, Lin Xie, Jiaqing He
{"title":"High-Entropy Thermoelectric Materials: Advances, Challenges, and Future Opportunities","authors":"Shixuan Liu, Di Wu, Minghua Kong, Wu Wang, Lin Xie, Jiaqing He","doi":"10.1021/acsenergylett.4c03369","DOIUrl":null,"url":null,"abstract":"Thermoelectric conversion technology can realize direct conversion between heat and electricity, providing a promising approach to relieve the energy crisis. The application of thermoelectric technology is closely related to materials’ thermoelectric and mechanical properties. However, the strong coupling of key parameters involving charge carriers and phonon transport hinders the substantial improvements in overall thermoelectric performance. In recent years, a high-entropy strategy promoted remarkable progress in the field of thermoelectric materials by leveraging the four core effects. In this review, we first discuss the theoretical basis for how a high-entropy strategy synergistically optimizes thermoelectric performance. We then classify the examples where high-entropy effects can optimize electrical, thermal, and mechanical properties in thermoelectric materials. Following this, we summarize the overall advances that the high-entropy strategy has brought to thermoelectric materials and devices. Finally, we point out the remaining challenges in high-entropy thermoelectrics and offer perspectives on future research directions in this field.","PeriodicalId":16,"journal":{"name":"ACS Energy Letters ","volume":"82 1","pages":""},"PeriodicalIF":19.3000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Energy Letters ","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsenergylett.4c03369","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Thermoelectric conversion technology can realize direct conversion between heat and electricity, providing a promising approach to relieve the energy crisis. The application of thermoelectric technology is closely related to materials’ thermoelectric and mechanical properties. However, the strong coupling of key parameters involving charge carriers and phonon transport hinders the substantial improvements in overall thermoelectric performance. In recent years, a high-entropy strategy promoted remarkable progress in the field of thermoelectric materials by leveraging the four core effects. In this review, we first discuss the theoretical basis for how a high-entropy strategy synergistically optimizes thermoelectric performance. We then classify the examples where high-entropy effects can optimize electrical, thermal, and mechanical properties in thermoelectric materials. Following this, we summarize the overall advances that the high-entropy strategy has brought to thermoelectric materials and devices. Finally, we point out the remaining challenges in high-entropy thermoelectrics and offer perspectives on future research directions in this field.

Abstract Image

高熵热电材料:进展、挑战和未来机遇
热电转换技术可以实现热电之间的直接转换,为缓解能源危机提供了一条有希望的途径。热电技术的应用与材料的热电性能和力学性能密切相关。然而,涉及载流子和声子输运的关键参数的强耦合阻碍了整体热电性能的实质性改善。近年来,高熵策略利用四大核心效应,推动热电材料领域取得了显著进展。在本文中,我们首先讨论了高熵策略如何协同优化热电性能的理论基础。然后,我们对高熵效应可以优化热电材料的电学、热学和机械性能的例子进行分类。接下来,我们总结了高熵策略给热电材料和器件带来的总体进展。最后,我们指出了高熵热电学中存在的挑战,并对该领域未来的研究方向提出了展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Energy Letters
ACS Energy Letters Energy-Renewable Energy, Sustainability and the Environment
CiteScore
31.20
自引率
5.00%
发文量
469
审稿时长
1 months
期刊介绍: ACS Energy Letters is a monthly journal that publishes papers reporting new scientific advances in energy research. The journal focuses on topics that are of interest to scientists working in the fundamental and applied sciences. Rapid publication is a central criterion for acceptance, and the journal is known for its quick publication times, with an average of 4-6 weeks from submission to web publication in As Soon As Publishable format. ACS Energy Letters is ranked as the number one journal in the Web of Science Electrochemistry category. It also ranks within the top 10 journals for Physical Chemistry, Energy & Fuels, and Nanoscience & Nanotechnology. The journal offers several types of articles, including Letters, Energy Express, Perspectives, Reviews, Editorials, Viewpoints and Energy Focus. Additionally, authors have the option to submit videos that summarize or support the information presented in a Perspective or Review article, which can be highlighted on the journal's website. ACS Energy Letters is abstracted and indexed in Chemical Abstracts Service/SciFinder, EBSCO-summon, PubMed, Web of Science, Scopus and Portico.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信