How far do we still need to go with antibiotics in aquatic environments? Antibiotic occurrence, chemical-free or chemical-limited strategies, key challenges, and future perspectives
Yijia Lu , Xiaoqin Zhou , Ye Zheng , Haolin Yang , Wenbin Cao
{"title":"How far do we still need to go with antibiotics in aquatic environments? Antibiotic occurrence, chemical-free or chemical-limited strategies, key challenges, and future perspectives","authors":"Yijia Lu , Xiaoqin Zhou , Ye Zheng , Haolin Yang , Wenbin Cao","doi":"10.1016/j.watres.2025.123179","DOIUrl":null,"url":null,"abstract":"<div><div>Global consumption and progressive migration of antibiotics through aquatic systems have contributed to their rapid spread, posing significant threats to environmental and human health, and antibiotics have been recognized as emerging pollutants. Hence, extensive approaches have been proposed for antibiotic treatment in water, yielding great achievements. This review systematically summarized current knowledge from contamination characteristics to treatment strategies. First, the prevalence and characteristics of antibiotics in aquatic environments were discussed and chemical-free or chemical-limited strategies were subsequently reviewed, i.e. adsorption, membrane separation, electrochemistry, and photocatalysis. Thereafter, gaps were identified between conditions for treatment in aquatic environments and lab-scale experiments, emphasizing that simulated antibiotic concentrations in laboratory studies were often hundreds of times higher than those found in natural settings and lack consideration of complex water matrices. Additionally, concerns regarding health risks arose due to unexpectedly low mineralization rates. For future advancements, hybrid or combined technologies were recommended, along with the integration of smart tools such as machine learning for deeper insights into degradation processes and cross-risk assessments. This review offers valuable guidance for establishing effective strategies to control antibiotics in aquatic environments.</div></div>","PeriodicalId":443,"journal":{"name":"Water Research","volume":"275 ","pages":"Article 123179"},"PeriodicalIF":11.4000,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0043135425000934","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Global consumption and progressive migration of antibiotics through aquatic systems have contributed to their rapid spread, posing significant threats to environmental and human health, and antibiotics have been recognized as emerging pollutants. Hence, extensive approaches have been proposed for antibiotic treatment in water, yielding great achievements. This review systematically summarized current knowledge from contamination characteristics to treatment strategies. First, the prevalence and characteristics of antibiotics in aquatic environments were discussed and chemical-free or chemical-limited strategies were subsequently reviewed, i.e. adsorption, membrane separation, electrochemistry, and photocatalysis. Thereafter, gaps were identified between conditions for treatment in aquatic environments and lab-scale experiments, emphasizing that simulated antibiotic concentrations in laboratory studies were often hundreds of times higher than those found in natural settings and lack consideration of complex water matrices. Additionally, concerns regarding health risks arose due to unexpectedly low mineralization rates. For future advancements, hybrid or combined technologies were recommended, along with the integration of smart tools such as machine learning for deeper insights into degradation processes and cross-risk assessments. This review offers valuable guidance for establishing effective strategies to control antibiotics in aquatic environments.
期刊介绍:
Water Research, along with its open access companion journal Water Research X, serves as a platform for publishing original research papers covering various aspects of the science and technology related to the anthropogenic water cycle, water quality, and its management worldwide. The audience targeted by the journal comprises biologists, chemical engineers, chemists, civil engineers, environmental engineers, limnologists, and microbiologists. The scope of the journal include:
•Treatment processes for water and wastewaters (municipal, agricultural, industrial, and on-site treatment), including resource recovery and residuals management;
•Urban hydrology including sewer systems, stormwater management, and green infrastructure;
•Drinking water treatment and distribution;
•Potable and non-potable water reuse;
•Sanitation, public health, and risk assessment;
•Anaerobic digestion, solid and hazardous waste management, including source characterization and the effects and control of leachates and gaseous emissions;
•Contaminants (chemical, microbial, anthropogenic particles such as nanoparticles or microplastics) and related water quality sensing, monitoring, fate, and assessment;
•Anthropogenic impacts on inland, tidal, coastal and urban waters, focusing on surface and ground waters, and point and non-point sources of pollution;
•Environmental restoration, linked to surface water, groundwater and groundwater remediation;
•Analysis of the interfaces between sediments and water, and between water and atmosphere, focusing specifically on anthropogenic impacts;
•Mathematical modelling, systems analysis, machine learning, and beneficial use of big data related to the anthropogenic water cycle;
•Socio-economic, policy, and regulations studies.