Minchae Kwak , Minji Kim , Dong-Hyun Peck , Seong-Joo Lee , Jeong Hyun Shim , Oc Hee Han , Jung Ho Lee
{"title":"Observation of NMR signals from samples with flat geometry: Application to in-situ analysis of a direct ethanol fuel cell","authors":"Minchae Kwak , Minji Kim , Dong-Hyun Peck , Seong-Joo Lee , Jeong Hyun Shim , Oc Hee Han , Jung Ho Lee","doi":"10.1016/j.jmr.2025.107831","DOIUrl":null,"url":null,"abstract":"<div><div>Most NMR samples are cylindrical, which is ideal for obtaining high-resolution NMR spectra, especially in superconducting magnets with a vertical bore. However, expanding NMR applicability to samples that are not necessarily cylindrical requires a new approach. In this study, we introduce a method for obtaining solution NMR signals from flat samples, such as flat containers or layered structures like a fuel cell. A flat rectangular NMR coil was developed for RF application and sensitive signal detection, while biplanar shim coils were designed using Bfieldtools and manufactured on multilayered printed circuit boards to improve NMR resolution. Water and ethanol molecules in flat rectangular and flat circular containers, as well as in a direct ethanol fuel cell, were observed with narrow NMR linewidths. We believe that our spectrometer design will enable NMR analysis of samples that need to be contained in flat structures and support <em>in-situ</em> analysis of various devices.</div></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"372 ","pages":"Article 107831"},"PeriodicalIF":2.0000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780725000035","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Most NMR samples are cylindrical, which is ideal for obtaining high-resolution NMR spectra, especially in superconducting magnets with a vertical bore. However, expanding NMR applicability to samples that are not necessarily cylindrical requires a new approach. In this study, we introduce a method for obtaining solution NMR signals from flat samples, such as flat containers or layered structures like a fuel cell. A flat rectangular NMR coil was developed for RF application and sensitive signal detection, while biplanar shim coils were designed using Bfieldtools and manufactured on multilayered printed circuit boards to improve NMR resolution. Water and ethanol molecules in flat rectangular and flat circular containers, as well as in a direct ethanol fuel cell, were observed with narrow NMR linewidths. We believe that our spectrometer design will enable NMR analysis of samples that need to be contained in flat structures and support in-situ analysis of various devices.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.