Responses of biological characteristics and detoxification enzymes in the fall armyworm to methoxyfenozide stress.

Shuqi Yang, Yue Yuan, Xiongwei Zhang, Yaqin Zou, Pan Yao, Danni Ye, Liutong Ye, Xiaolei Zhang, Junkai Li
{"title":"Responses of biological characteristics and detoxification enzymes in the fall armyworm to methoxyfenozide stress.","authors":"Shuqi Yang, Yue Yuan, Xiongwei Zhang, Yaqin Zou, Pan Yao, Danni Ye, Liutong Ye, Xiaolei Zhang, Junkai Li","doi":"10.1093/jee/toaf003","DOIUrl":null,"url":null,"abstract":"<p><p>Methoxyfenozide is an insecticide with a unique mode of action on the insect ecdysone receptor and has been registered for the control of insect pests all over the world. In the present work, Spodoptera frugiperda was exposed to sublethal and lethal concentrations of methoxyfenozide to determine its impact on specific biological traits, metabolic enzyme activity, and the expression of detoxification enzymes. The result showed that 72-h posttreatment with LC50 and LC70 of methoxyfenozide significantly reduced the fecundity (eggs/female) of the F0 generation compared to those of the control group. However, the duration of the prepupal period was significantly increased. The exposure to LC10, LC30, LC50, and LC70 concentrations of methoxyfenozide significantly extended the developmental duration of larvae in F1 individuals. The fecundity of the F1 generation was significantly decreased, and the population life table parameters of F1 were also significantly affected. The activity of carboxylesterases showed little significant change, whereas the activity of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) was significantly altered after exposure to LC10, LC30, LC50, and LC70 of methoxyfenozide. In total, 24-, 48-, and 96-h posttreatment with LC10, LC30, LC50, and LC70 of methoxyfenozide could cause upregulation of P450 genes such as CYP6AE44, CYP6B39, CYP9A26, CYP9A58, CYP9A59, and CYP9A60, as well as GST genes including GSTe3, GSTe9, GSTe10, GSTe15, GSTo2, GSTs1, GSTs5, GSTm2, and GSTm3. These findings could be instrumental in elucidating the molecular mechanisms underlying the sublethal and lethal effects of methoxyfenozide to S. frugiperda.</p>","PeriodicalId":94077,"journal":{"name":"Journal of economic entomology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of economic entomology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jee/toaf003","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Methoxyfenozide is an insecticide with a unique mode of action on the insect ecdysone receptor and has been registered for the control of insect pests all over the world. In the present work, Spodoptera frugiperda was exposed to sublethal and lethal concentrations of methoxyfenozide to determine its impact on specific biological traits, metabolic enzyme activity, and the expression of detoxification enzymes. The result showed that 72-h posttreatment with LC50 and LC70 of methoxyfenozide significantly reduced the fecundity (eggs/female) of the F0 generation compared to those of the control group. However, the duration of the prepupal period was significantly increased. The exposure to LC10, LC30, LC50, and LC70 concentrations of methoxyfenozide significantly extended the developmental duration of larvae in F1 individuals. The fecundity of the F1 generation was significantly decreased, and the population life table parameters of F1 were also significantly affected. The activity of carboxylesterases showed little significant change, whereas the activity of glutathione S-transferases (GSTs) and cytochrome P450 monooxygenases (P450s) was significantly altered after exposure to LC10, LC30, LC50, and LC70 of methoxyfenozide. In total, 24-, 48-, and 96-h posttreatment with LC10, LC30, LC50, and LC70 of methoxyfenozide could cause upregulation of P450 genes such as CYP6AE44, CYP6B39, CYP9A26, CYP9A58, CYP9A59, and CYP9A60, as well as GST genes including GSTe3, GSTe9, GSTe10, GSTe15, GSTo2, GSTs1, GSTs5, GSTm2, and GSTm3. These findings could be instrumental in elucidating the molecular mechanisms underlying the sublethal and lethal effects of methoxyfenozide to S. frugiperda.

秋粘虫生物学特性及解毒酶对甲氧虫酰肼胁迫的响应。
甲氧虫酰肼是一种对昆虫蜕皮激素受体具有独特作用方式的杀虫剂,已在世界各国登记用于害虫防治。本研究以亚致死浓度和致死浓度的甲氧虫酰肼对夜蛾特定生物学性状、代谢酶活性和解毒酶表达的影响为研究对象。结果表明,与对照组相比,甲氧虫腈LC50和LC70处理后72 h, F0代产卵量(卵/雌)显著降低。然而,蛹前期的持续时间明显增加。暴露于LC10、LC30、LC50和LC70浓度的甲氧虫酰肼显著延长了F1幼虫的发育时间。F1代的繁殖力显著下降,种群生命表参数也受到显著影响。羧酸酯酶活性变化不大,而谷胱甘肽s转移酶(GSTs)和细胞色素P450单加氧酶(P450)活性在LC10、LC30、LC50和LC70处理下均有显著变化。综上所述,甲氧基酰虫胺LC10、LC30、LC50、LC70处理后24、48、96 h可引起CYP6AE44、CYP6B39、CYP9A26、CYP9A58、CYP9A59、CYP9A60等P450基因和GSTe3、GSTe9、GSTe10、GSTe15、GSTo2、GSTs1、GSTs5、GSTm2、GSTm3等GST基因上调。这些发现可能有助于阐明甲氧虫酰肼对frugiperda亚致死和致死作用的分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信