{"title":"Fibrotic extracellular matrix preferentially induces a partial Epithelial–Mesenchymal Transition phenotype in a 3-D agent based model of fibrosis","authors":"Kristin P. Kim, Christopher A. Lemmon","doi":"10.1016/j.mbs.2025.109375","DOIUrl":null,"url":null,"abstract":"<div><div>One of the main drivers of fibrotic diseases is epithelial–mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-<span><math><mi>β</mi></math></span>1 (TGF-<span><math><mi>β</mi></math></span>1) has been previously shown to regulate EMT. TGF-<span><math><mi>β</mi></math></span>1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis. We have previously demonstrated experimentally that inhibition of FN fibrillogenesis and/or TGF-<span><math><mi>β</mi></math></span>1 tethering to FN inhibits EMT. However, these studies have only been conducted on 2-D cell monolayers, and the role of TGF-<span><math><mi>β</mi></math></span>1-FN tethering in 3-D cellular environments is not clear. As such, we sought to develop a 3-D computational model of epithelial spheroids that captured both EMT signaling dynamics and TGF-<span><math><mi>β</mi></math></span>1-FN tethering dynamics. We have incorporated the bi-stable EMT switch model developed by Tian et al. (2013) into a 3-D multicellular model to capture both temporal and spatial TGF-<span><math><mi>β</mi></math></span>1 signaling dynamics. We showed that the addition of increasing concentrations of exogeneous TGF-<span><math><mi>β</mi></math></span>1 led to faster EMT progression, indicated by increased expression of mesenchymal markers, decreased cell proliferation and increased migration. We then incorporated TGF-<span><math><mi>β</mi></math></span>1-FN fibril tethering by locally reducing the TGF-<span><math><mi>β</mi></math></span>1 diffusion coefficient as a function of EMT to simulate the reduced movement of TGF-<span><math><mi>β</mi></math></span>1 when tethered to FN fibrils during fibrosis. We showed that incorporation of TGF-<span><math><mi>β</mi></math></span>1 tethering to FN fibrils promoted a partial EMT state, independent of exogenous TGF-<span><math><mi>β</mi></math></span>1 concentration, indicating a mechanism by which fibrotic ECM can promote a partial EMT state.</div></div>","PeriodicalId":51119,"journal":{"name":"Mathematical Biosciences","volume":"381 ","pages":"Article 109375"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Biosciences","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0025556425000021","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
One of the main drivers of fibrotic diseases is epithelial–mesenchymal transition (EMT): a transdifferentiation process in which cells undergo a phenotypic change from an epithelial state to a pro-migratory state. The cytokine transforming growth factor-1 (TGF-1) has been previously shown to regulate EMT. TGF-1 binds to fibronectin (FN) fibrils, which are the primary extracellular matrix (ECM) component in renal fibrosis. We have previously demonstrated experimentally that inhibition of FN fibrillogenesis and/or TGF-1 tethering to FN inhibits EMT. However, these studies have only been conducted on 2-D cell monolayers, and the role of TGF-1-FN tethering in 3-D cellular environments is not clear. As such, we sought to develop a 3-D computational model of epithelial spheroids that captured both EMT signaling dynamics and TGF-1-FN tethering dynamics. We have incorporated the bi-stable EMT switch model developed by Tian et al. (2013) into a 3-D multicellular model to capture both temporal and spatial TGF-1 signaling dynamics. We showed that the addition of increasing concentrations of exogeneous TGF-1 led to faster EMT progression, indicated by increased expression of mesenchymal markers, decreased cell proliferation and increased migration. We then incorporated TGF-1-FN fibril tethering by locally reducing the TGF-1 diffusion coefficient as a function of EMT to simulate the reduced movement of TGF-1 when tethered to FN fibrils during fibrosis. We showed that incorporation of TGF-1 tethering to FN fibrils promoted a partial EMT state, independent of exogenous TGF-1 concentration, indicating a mechanism by which fibrotic ECM can promote a partial EMT state.
期刊介绍:
Mathematical Biosciences publishes work providing new concepts or new understanding of biological systems using mathematical models, or methodological articles likely to find application to multiple biological systems. Papers are expected to present a major research finding of broad significance for the biological sciences, or mathematical biology. Mathematical Biosciences welcomes original research articles, letters, reviews and perspectives.