Personalizedµ-transcranial alternating current stimulation improves online brain-computer interface control.

Deland H Liu, Satyam Kumar, Hussein Alawieh, Frigyes Samuel Racz, José Del R Millán
{"title":"Personalized<i>µ</i>-transcranial alternating current stimulation improves online brain-computer interface control.","authors":"Deland H Liu, Satyam Kumar, Hussein Alawieh, Frigyes Samuel Racz, José Del R Millán","doi":"10.1088/1741-2552/ada980","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective.</i>A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).<i>Approach.</i>Previous studies have identified that the peak power spectral density value in sensorimotor idling rhythms is a neural correlate of participants' upper limb MI-BCI performances. In this active-controlled, single-blind study, we applied 20 min of tACS at the participant-specific, peak<i>µ</i>frequency in resting-state sensorimotor rhythms (SMRs), with the goal of enhancing resting-state<i>µ</i>SMRs.<i>Main results.</i>After tACS, we observed significant improvements in event-related desynchronizations (ERDs) of<i>µ</i>SMRs, and in the performance of an online MI-BCI that decodes left versus right hand commands in healthy participants (<i>N</i>= 10)-but not in an active control-stimulation control group (<i>N</i>= 10). Lastly, we showed a significant correlation between the resting-state<i>µ</i>SMRs and<i>µ</i>ERD, offering a mechanistic interpretation behind the observed changes in online BCI performances.<i>Significance.</i>Our research lays the groundwork for future non-invasive interventions designed to enhance BCI performances, thereby improving the independence and interactions of individuals who rely on these systems.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/ada980","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective.A motor imagery (MI)-based brain-computer interface (BCI) enables users to engage with external environments by capturing and decoding electroencephalography (EEG) signals associated with the imagined movement of specific limbs. Despite significant advancements in BCI technologies over the past 40 years, a notable challenge remains: many users lack BCI proficiency, unable to produce sufficiently distinct and reliable MI brain patterns, hence leading to low classification rates in their BCIs. The objective of this study is to enhance the online performance of MI-BCIs in a personalized, biomarker-driven approach using transcranial alternating current stimulation (tACS).Approach.Previous studies have identified that the peak power spectral density value in sensorimotor idling rhythms is a neural correlate of participants' upper limb MI-BCI performances. In this active-controlled, single-blind study, we applied 20 min of tACS at the participant-specific, peakµfrequency in resting-state sensorimotor rhythms (SMRs), with the goal of enhancing resting-stateµSMRs.Main results.After tACS, we observed significant improvements in event-related desynchronizations (ERDs) ofµSMRs, and in the performance of an online MI-BCI that decodes left versus right hand commands in healthy participants (N= 10)-but not in an active control-stimulation control group (N= 10). Lastly, we showed a significant correlation between the resting-stateµSMRs andµERD, offering a mechanistic interpretation behind the observed changes in online BCI performances.Significance.Our research lays the groundwork for future non-invasive interventions designed to enhance BCI performances, thereby improving the independence and interactions of individuals who rely on these systems.

个性化μ-经颅交流电刺激改善了在线脑机接口控制。
目的:基于运动图像(MI)的脑机接口(BCI)通过捕获和解码与特定肢体想象运动相关的脑电图(EEG)信号,使用户能够参与外部环境。尽管脑机接口技术在过去40年中取得了重大进展,但仍存在一个显著的挑战:许多用户缺乏脑机接口的熟练程度,无法产生足够清晰可靠的脑机接口脑模式,因此导致脑机接口的分类率较低。本研究的目的是利用经颅交流电刺激(tACS),以个性化的、生物标志物驱动的方法提高mi - bci的在线性能。方法:已有研究发现,感觉运动怠速节奏的峰值功率谱密度(PSD)值与上肢MI-BCI表现存在神经关联。在这项主动对照的单盲研究中,我们在参与者特定的静息状态感觉运动节律(smr)峰值频率上应用了20分钟的tACS,目的是增强静息状态的µsmr。主要结果:在tACS后,我们观察到健康参与者(N=10)的感觉运动节律(smr)的事件相关去同步(ERDs)和在线MI-BCI解码左手和右手命令的表现显著改善,但在主动对照刺激对照组(N=10)没有显著改善。最后,我们展示了静息状态的微smr和微ERD之间的显著相关性,为观察到的在线脑机接口性能变化提供了机制解释。意义:我们的研究为未来旨在提高脑机接口性能的非侵入性干预奠定了基础,从而提高依赖这些系统的个体的独立性和相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信