Artificial neural network detection of pancreatic cancer from proton (1H) magnetic resonance spectroscopy patterns of plasma metabolites.

IF 5.4 Q1 MEDICINE, RESEARCH & EXPERIMENTAL
Meiyappan Solaiyappan, Santosh Kumar Bharti, Raj Kumar Sharma, Mohamad Dbouk, Wasay Nizam, Malcolm V Brock, Michael G Goggins, Zaver M Bhujwalla
{"title":"Artificial neural network detection of pancreatic cancer from proton (1H) magnetic resonance spectroscopy patterns of plasma metabolites.","authors":"Meiyappan Solaiyappan, Santosh Kumar Bharti, Raj Kumar Sharma, Mohamad Dbouk, Wasay Nizam, Malcolm V Brock, Michael G Goggins, Zaver M Bhujwalla","doi":"10.1038/s43856-024-00727-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Routine screening to detect silent but deadly cancers such as pancreatic ductal adenocarcinoma (PDAC) can significantly improve survival, creating an important need for a convenient screening test. High-resolution proton (1H) magnetic resonance spectroscopy (MRS) of plasma identifies circulating metabolites that can allow detection of cancers such as PDAC that have highly dysregulated metabolism.</p><p><strong>Methods: </strong>We first acquired 1H MR spectra of human plasma samples classified as normal, benign pancreatic disease and malignant (PDAC). We next trained a system of artificial neural networks (ANNs) to process and discriminate these three classes using the full spectrum range and resolution of the acquired spectral data. We then identified and ranked spectral regions that played a salient role in the discrimination to provide interpretability of the results. We tested the accuracy of the ANN performance using blinded plasma samples.</p><p><strong>Results: </strong>We show that our ANN approach yields, in a cross validation-based training of 170 samples, a sensitivity and a specificity of 100% for malignant versus non-malignant (normal and disease combined) discrimination. The trained ANNs achieve a sensitivity and specificity of 87.5% and 93.1% respectively (AUC: ROC = 0.931, P-R = 0.854), with 45 blinded plasma samples. Further, we show that the salient spectral regions of the ANN discrimination correspond to metabolites of known importance for their role in cancers.</p><p><strong>Conclusions: </strong>Our results demonstrate that the ANN approach presented here can identify PDAC from 1H MR plasma spectra to provide a convenient plasma-based assay for population-level screening of PDAC. The ANN approach can be suitably expanded to detect other cancers with metabolic dysregulation.</p>","PeriodicalId":72646,"journal":{"name":"Communications medicine","volume":"5 1","pages":"24"},"PeriodicalIF":5.4000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11751387/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1038/s43856-024-00727-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Routine screening to detect silent but deadly cancers such as pancreatic ductal adenocarcinoma (PDAC) can significantly improve survival, creating an important need for a convenient screening test. High-resolution proton (1H) magnetic resonance spectroscopy (MRS) of plasma identifies circulating metabolites that can allow detection of cancers such as PDAC that have highly dysregulated metabolism.

Methods: We first acquired 1H MR spectra of human plasma samples classified as normal, benign pancreatic disease and malignant (PDAC). We next trained a system of artificial neural networks (ANNs) to process and discriminate these three classes using the full spectrum range and resolution of the acquired spectral data. We then identified and ranked spectral regions that played a salient role in the discrimination to provide interpretability of the results. We tested the accuracy of the ANN performance using blinded plasma samples.

Results: We show that our ANN approach yields, in a cross validation-based training of 170 samples, a sensitivity and a specificity of 100% for malignant versus non-malignant (normal and disease combined) discrimination. The trained ANNs achieve a sensitivity and specificity of 87.5% and 93.1% respectively (AUC: ROC = 0.931, P-R = 0.854), with 45 blinded plasma samples. Further, we show that the salient spectral regions of the ANN discrimination correspond to metabolites of known importance for their role in cancers.

Conclusions: Our results demonstrate that the ANN approach presented here can identify PDAC from 1H MR plasma spectra to provide a convenient plasma-based assay for population-level screening of PDAC. The ANN approach can be suitably expanded to detect other cancers with metabolic dysregulation.

人工神经网络检测胰腺癌血浆代谢物质子(1H)磁共振谱图。
背景:常规筛查检测无症状但致命的癌症,如胰腺导管腺癌(PDAC)可以显著提高生存率,因此需要一种方便的筛查试验。血浆的高分辨率质子(1H)磁共振波谱(MRS)识别循环代谢物,可以检测代谢高度失调的癌症,如PDAC。方法:首先获取正常、良性和恶性胰腺疾病(PDAC)的人血浆样品的1H MR谱。接下来,我们训练了一个人工神经网络(ann)系统,利用所获取的光谱数据的全光谱范围和分辨率来处理和区分这三类。然后,我们确定并对光谱区域进行排序,这些区域在识别中发挥了显著作用,以提供结果的可解释性。我们使用盲法血浆样本测试了人工神经网络性能的准确性。结果:我们表明,在170个样本的基于交叉验证的训练中,我们的人工神经网络方法在恶性与非恶性(正常和疾病结合)区分方面的灵敏度和特异性为100%。在45份盲法血浆样本中,训练的人工神经网络的灵敏度和特异性分别为87.5%和93.1% (AUC: ROC = 0.931, P-R = 0.854)。此外,研究人员还发现,神经网络识别的显著光谱区域对应于已知在癌症中起重要作用的代谢物。结论:我们的研究结果表明,本文提出的人工神经网络方法可以从1H MR等离子体光谱中识别PDAC,为PDAC的人群筛查提供了一种方便的基于血浆的检测方法。人工神经网络方法可以适当地扩展到检测其他代谢失调的癌症。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信