Rodrigo de Souza Bulhões , Jonatha Sousa Pimentel , Paulo Canas Rodrigues
{"title":"Bayesian spatio-temporal modeling of severe acute respiratory syndrome in Brazil: A comparative analysis across pre-, during, and post-COVID-19 eras","authors":"Rodrigo de Souza Bulhões , Jonatha Sousa Pimentel , Paulo Canas Rodrigues","doi":"10.1016/j.idm.2024.12.010","DOIUrl":null,"url":null,"abstract":"<div><div>This paper presents an investigation into the spatio-temporal dynamics of Severe Acute Respiratory Syndrome (SARS) across the diverse health regions of Brazil from 2016 to 2024. Leveraging extensive datasets that include SARS cases, climate data, hospitalization records, and COVID-19 vaccination information, our study employs a Bayesian spatio-temporal generalized linear model to capture the intricate dependencies inherent in the dataset. The analysis reveals significant variations in the incidence of SARS cases over time, particularly during and between the distinct eras of pre-COVID-19, during, and post-COVID-19. Our modeling approach accommodates explanatory variables such as humidity, temperature, and COVID-19 vaccine doses, providing a comprehensive understanding of the factors influencing SARS dynamics. Our modeling revealed unique temporal trends in SARS cases for each region, resembling neighborhood patterns. Low temperature and high humidity were linked to decreased cases, while in the COVID-19 era, temperature and vaccination coverage played significant roles. The findings contribute valuable insights into the spatial and temporal patterns of SARS in Brazil, offering a foundation for targeted public health interventions and preparedness strategies.</div></div>","PeriodicalId":36831,"journal":{"name":"Infectious Disease Modelling","volume":"10 2","pages":"Pages 466-476"},"PeriodicalIF":8.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11743096/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infectious Disease Modelling","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468042724001362","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Medicine","Score":null,"Total":0}
引用次数: 0
Abstract
This paper presents an investigation into the spatio-temporal dynamics of Severe Acute Respiratory Syndrome (SARS) across the diverse health regions of Brazil from 2016 to 2024. Leveraging extensive datasets that include SARS cases, climate data, hospitalization records, and COVID-19 vaccination information, our study employs a Bayesian spatio-temporal generalized linear model to capture the intricate dependencies inherent in the dataset. The analysis reveals significant variations in the incidence of SARS cases over time, particularly during and between the distinct eras of pre-COVID-19, during, and post-COVID-19. Our modeling approach accommodates explanatory variables such as humidity, temperature, and COVID-19 vaccine doses, providing a comprehensive understanding of the factors influencing SARS dynamics. Our modeling revealed unique temporal trends in SARS cases for each region, resembling neighborhood patterns. Low temperature and high humidity were linked to decreased cases, while in the COVID-19 era, temperature and vaccination coverage played significant roles. The findings contribute valuable insights into the spatial and temporal patterns of SARS in Brazil, offering a foundation for targeted public health interventions and preparedness strategies.
期刊介绍:
Infectious Disease Modelling is an open access journal that undergoes peer-review. Its main objective is to facilitate research that combines mathematical modelling, retrieval and analysis of infection disease data, and public health decision support. The journal actively encourages original research that improves this interface, as well as review articles that highlight innovative methodologies relevant to data collection, informatics, and policy making in the field of public health.