{"title":"Modular Maximization Theory: A functional account of economic behavior in laboratory animal models with applications to drug-seeking behavior","authors":"Federico Sanabria , Matthew Gildea , Brissa Gutiérrez , Cristina Santos , Adeline Hibshman","doi":"10.1016/j.neubiorev.2025.106010","DOIUrl":null,"url":null,"abstract":"<div><div>Substance abuse research depends on precise and sensitive assessments of reinforcer efficacy in animal models. However, conventional methods often lack theoretical rigor and specificity to support these assessments. To address these gaps, the Modular Maximization Theory (MMT) is introduced as a comprehensive framework for understanding instrumental behavior. Like earlier maximization theories, MMT posits that behavior is distributed across alternatives to maximize utility over time. This concept is structured through five foundational postulates that define alternative actions and rules for choosing between them as budget constraints and utility functions. A key innovation of MMT is its incorporation of reinforcer utilization—encompassing both consummatory and post-consummatory activities—into the budget-constraint function. A model of ratio-schedule performance is developed under the assumption that utilization is proportional to demand, with utility represented as an additive power function of reinforcer magnitude. This model, termed PURSPU (Proportional Utilization, Ratio Schedule, Power Utility), effectively explains how reinforcer magnitude, response effort, non-contingent reinforcement, and income influence demand curves, behavior-output functions, dose-response relationships, and progressive-ratio breakpoints, while accounting for rate-dependent effects. The model also offers novel insights into choice behavior, including concurrent-schedule performance, income dependency, and delay discounting, as well as post-reinforcement pauses and run rates. Variations in budget constraints and utility functions are proposed as alternative models. Potential theoretical advancements, more targeted assessments of drug abuse liability, and the broader role of MMT in understanding human drug abuse are explored.</div></div>","PeriodicalId":56105,"journal":{"name":"Neuroscience and Biobehavioral Reviews","volume":"169 ","pages":"Article 106010"},"PeriodicalIF":7.5000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience and Biobehavioral Reviews","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0149763425000107","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Substance abuse research depends on precise and sensitive assessments of reinforcer efficacy in animal models. However, conventional methods often lack theoretical rigor and specificity to support these assessments. To address these gaps, the Modular Maximization Theory (MMT) is introduced as a comprehensive framework for understanding instrumental behavior. Like earlier maximization theories, MMT posits that behavior is distributed across alternatives to maximize utility over time. This concept is structured through five foundational postulates that define alternative actions and rules for choosing between them as budget constraints and utility functions. A key innovation of MMT is its incorporation of reinforcer utilization—encompassing both consummatory and post-consummatory activities—into the budget-constraint function. A model of ratio-schedule performance is developed under the assumption that utilization is proportional to demand, with utility represented as an additive power function of reinforcer magnitude. This model, termed PURSPU (Proportional Utilization, Ratio Schedule, Power Utility), effectively explains how reinforcer magnitude, response effort, non-contingent reinforcement, and income influence demand curves, behavior-output functions, dose-response relationships, and progressive-ratio breakpoints, while accounting for rate-dependent effects. The model also offers novel insights into choice behavior, including concurrent-schedule performance, income dependency, and delay discounting, as well as post-reinforcement pauses and run rates. Variations in budget constraints and utility functions are proposed as alternative models. Potential theoretical advancements, more targeted assessments of drug abuse liability, and the broader role of MMT in understanding human drug abuse are explored.
期刊介绍:
The official journal of the International Behavioral Neuroscience Society publishes original and significant review articles that explore the intersection between neuroscience and the study of psychological processes and behavior. The journal also welcomes articles that primarily focus on psychological processes and behavior, as long as they have relevance to one or more areas of neuroscience.