Yibin Yang , Hao He , Yucong Huang , Xiaohui Ai , Xia Zhu , Fei Yin , Jingen Xu , Yuhua Chen
{"title":"Molecular mechanism of Yersinia ruckeri Flagellin C (FliC) induced intestinal inflammation in channel catfish (Ictalurus punctatus)","authors":"Yibin Yang , Hao He , Yucong Huang , Xiaohui Ai , Xia Zhu , Fei Yin , Jingen Xu , Yuhua Chen","doi":"10.1016/j.cbpb.2025.111072","DOIUrl":null,"url":null,"abstract":"<div><div><em>Yersinia ruckeri</em> is known to cause enteric red mouth disease (ERM) in channel catfish (<em>Ictalurus punctatus</em>). This study established a model of <em>Y. ruckeri</em>-induced intestinal inflammation in channel catfish. Subsequently, using quantitative polymerase chain reaction (qPCR), gene cloning, recombinant protein expression, protein molecular docking, and tissue pathology techniques, we investigated the role and molecular mechanism of Flagellin C (FliC) from <em>Y. ruckeri</em> in inducing inflammation. The findings indicated that FliC was the main virulence gene in <em>Y. ruckeri</em> responsible for inducing intestinal inflammation. Specifically, FliC bound to the host Toll-like receptor 5 (<em>tlr5</em>), leading to the upregulation of multiple inflammatory factors such as tumor necrosis factor (<em>tnf</em>)<em>-α</em>, interleukin (<em>il</em>)<em>-6</em>, and <em>il-1β</em>, and the activation of the nuclear factor-kappaB (NF-κB) and JAK-STAT signaling pathways, thereby initiating inflammation. The results were validated through experiments conducted both in cellular models and <em>in vivo</em>. In summary, this study identified FliC as a virulence gene in <em>Y. ruckeri</em> infection of channel catfish and elucidated its role in inducing intestinal inflammation.</div></div>","PeriodicalId":55236,"journal":{"name":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","volume":"277 ","pages":"Article 111072"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S109649592500003X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Yersinia ruckeri is known to cause enteric red mouth disease (ERM) in channel catfish (Ictalurus punctatus). This study established a model of Y. ruckeri-induced intestinal inflammation in channel catfish. Subsequently, using quantitative polymerase chain reaction (qPCR), gene cloning, recombinant protein expression, protein molecular docking, and tissue pathology techniques, we investigated the role and molecular mechanism of Flagellin C (FliC) from Y. ruckeri in inducing inflammation. The findings indicated that FliC was the main virulence gene in Y. ruckeri responsible for inducing intestinal inflammation. Specifically, FliC bound to the host Toll-like receptor 5 (tlr5), leading to the upregulation of multiple inflammatory factors such as tumor necrosis factor (tnf)-α, interleukin (il)-6, and il-1β, and the activation of the nuclear factor-kappaB (NF-κB) and JAK-STAT signaling pathways, thereby initiating inflammation. The results were validated through experiments conducted both in cellular models and in vivo. In summary, this study identified FliC as a virulence gene in Y. ruckeri infection of channel catfish and elucidated its role in inducing intestinal inflammation.
期刊介绍:
Comparative Biochemistry & Physiology (CBP) publishes papers in comparative, environmental and evolutionary physiology.
Part B: Biochemical and Molecular Biology (CBPB), focuses on biochemical physiology, primarily bioenergetics/energy metabolism, cell biology, cellular stress responses, enzymology, intermediary metabolism, macromolecular structure and function, gene regulation, evolutionary genetics. Most studies focus on biochemical or molecular analyses that have clear ramifications for physiological processes.