Personalized recommendation system to handle skin cancer at early stage based on hybrid model.

IF 1.1 3区 计算机科学 Q4 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Siva Prasad Reddy K V, Meera Selvakumar
{"title":"Personalized recommendation system to handle skin cancer at early stage based on hybrid model.","authors":"Siva Prasad Reddy K V, Meera Selvakumar","doi":"10.1080/0954898X.2024.2449173","DOIUrl":null,"url":null,"abstract":"<p><p>Skin cancer is one of the most prevalent and harmful forms of cancer, with early detection being crucial for successful treatment outcomes. However, current skin cancer detection methods often suffer from limitations such as reliance on manual inspection by clinicians, inconsistency in diagnostic accuracy, and a lack of personalized recommendations based on patient-specific data. In our work, we presented a Personalized Recommendation System to handle Skin Cancer at an early stage based on Hybrid Model (PRSSCHM). Preprocessing, improved deep joint segmentation, feature extraction, and classification are the major steps to identify the stages of skin cancer. The input image is first preprocessed using the Gaussian filtering method. Improved deep joint segmentation is employed to segment the preprocessed image. A set of features including Median Binary Pattern (MBP), Gray Level Co-occurrence Matrix (GLCM), and Improved Local Direction Texture Pattern (ILDTP) are extracted in the next step. Finally, the hybrid classification includes Improved Bi-directional Long Short-Term Memory (Bi-LSTM) and Deep Belief Network (DBN) used for the classification process, where the training will be carried out by the Integrated Bald Eagle and Average and Subtraction Optimizer (IBEASO) algorithm via optimizing the weights of the models.</p>","PeriodicalId":54735,"journal":{"name":"Network-Computation in Neural Systems","volume":" ","pages":"1-40"},"PeriodicalIF":1.1000,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Network-Computation in Neural Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1080/0954898X.2024.2449173","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Skin cancer is one of the most prevalent and harmful forms of cancer, with early detection being crucial for successful treatment outcomes. However, current skin cancer detection methods often suffer from limitations such as reliance on manual inspection by clinicians, inconsistency in diagnostic accuracy, and a lack of personalized recommendations based on patient-specific data. In our work, we presented a Personalized Recommendation System to handle Skin Cancer at an early stage based on Hybrid Model (PRSSCHM). Preprocessing, improved deep joint segmentation, feature extraction, and classification are the major steps to identify the stages of skin cancer. The input image is first preprocessed using the Gaussian filtering method. Improved deep joint segmentation is employed to segment the preprocessed image. A set of features including Median Binary Pattern (MBP), Gray Level Co-occurrence Matrix (GLCM), and Improved Local Direction Texture Pattern (ILDTP) are extracted in the next step. Finally, the hybrid classification includes Improved Bi-directional Long Short-Term Memory (Bi-LSTM) and Deep Belief Network (DBN) used for the classification process, where the training will be carried out by the Integrated Bald Eagle and Average and Subtraction Optimizer (IBEASO) algorithm via optimizing the weights of the models.

基于混合模型的皮肤癌早期治疗个性化推荐系统。
皮肤癌是最普遍和最有害的癌症之一,早期发现对于成功的治疗结果至关重要。然而,目前的皮肤癌检测方法往往存在局限性,例如依赖于临床医生的人工检查,诊断准确性不一致,以及缺乏基于患者特定数据的个性化建议。在我们的工作中,我们提出了一种基于混合模型(PRSSCHM)的早期皮肤癌个性化推荐系统。预处理、改进的深度关节分割、特征提取和分类是识别皮肤癌分期的主要步骤。首先使用高斯滤波方法对输入图像进行预处理。采用改进的深关节分割方法对预处理后的图像进行分割。下一步提取中值二值模式(MBP)、灰度共生矩阵(GLCM)和改进局部方向纹理模式(ILDTP)等特征。最后,混合分类包括用于分类过程的改进双向长短期记忆(Bi-LSTM)和深度信念网络(DBN),其中通过优化模型的权值,由综合秃鹰和平均减法优化器(IBEASO)算法进行训练。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Network-Computation in Neural Systems
Network-Computation in Neural Systems 工程技术-工程:电子与电气
CiteScore
3.70
自引率
1.30%
发文量
22
审稿时长
>12 weeks
期刊介绍: Network: Computation in Neural Systems welcomes submissions of research papers that integrate theoretical neuroscience with experimental data, emphasizing the utilization of cutting-edge technologies. We invite authors and researchers to contribute their work in the following areas: Theoretical Neuroscience: This section encompasses neural network modeling approaches that elucidate brain function. Neural Networks in Data Analysis and Pattern Recognition: We encourage submissions exploring the use of neural networks for data analysis and pattern recognition, including but not limited to image analysis and speech processing applications. Neural Networks in Control Systems: This category encompasses the utilization of neural networks in control systems, including robotics, state estimation, fault detection, and diagnosis. Analysis of Neurophysiological Data: We invite submissions focusing on the analysis of neurophysiology data obtained from experimental studies involving animals. Analysis of Experimental Data on the Human Brain: This section includes papers analyzing experimental data from studies on the human brain, utilizing imaging techniques such as MRI, fMRI, EEG, and PET. Neurobiological Foundations of Consciousness: We encourage submissions exploring the neural bases of consciousness in the brain and its simulation in machines.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信