Impact of single nucleotide polymorphisms (SNPs) in antioxidant-enzyme genes on the concentrations of folate, homocysteine and glutathione in plasma from healthy subjects after folic acid supplementation - a randomized controlled crossover trial.
{"title":"Impact of single nucleotide polymorphisms (SNPs) in antioxidant-enzyme genes on the concentrations of folate, homocysteine and glutathione in plasma from healthy subjects after folic acid supplementation - a randomized controlled crossover trial.","authors":"Mohammad Azam Mansoor, Tonje Holte Stea, Audun Slettan, Erandie Perera, Ridmi Maddumage, Darshana Kottahachchi, Dhikra Saleem Ali, Rona Cabo, Rune Blomhoff","doi":"10.1186/s12263-024-00761-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid.</p><p><strong>Methods: </strong>In a randomized, double blind, crossover study, healthy subjects received 0.8 mg folic acid per day or a placebo for two weeks. Twenty-four male, and sixty-seven female subjects participated in this study. Participants were aged 36.4 ± 14.8 years (mean ± SD). We studied SNPs in six genes by PCR methods. The concentrations of s-folate, p-tHcy and p-tGSH were measured in fasting samples with Cobas and an HPLC-fluorescence method. Student T-tests and ANOVA were used for the statistical calculations.</p><p><strong>Main findings: </strong>The subjects with SNP (rs4880) in superoxide dismutase (SOD2) gene (CC) allele had higher concentrations of s-folate and lower concentrations of p-tHcy than subjects with (CT + TT) alleles, (p = 0.014 and p = 0.012). Contrary to SOD2 (CC) allele, the subjects with SNP (rs1001179) catalase (CAT) CC allele had lower concentrations of s-folate (p = 0.029), higher concentrations of p-tGSH (0.017) and higher concentrations of p-tHcy before and after folic acid supplementations (p = 0.015, p = 0.017) than the subjects with (CT + TT) allele. Glutathione transferase (theta)1 (GST-T1) genotype was associated with higher concentrations of s-folate than GST-T0 before (p = 0.025) and after folic acid supplementation (p = 0.047). SNP (rs1050450) in glutathione peroxidase (GPX1) had also impact on the concentrations of p-tGSH (p = 0.011) in healthy subjects.</p><p><strong>Conclusion: </strong>SNPs in SOD2 (rs4880), CAT (rs1001179), and GST1 impact the concentrations of s-folate, and p-tHcy in healthy subjects before and after folic acid supplementation. Our findings suggest that SNPs in antioxidant-genes have a role in health and disease by impacting the concentrations of s-folate, p-tHcy and p-tGSH.</p>","PeriodicalId":55123,"journal":{"name":"Genes and Nutrition","volume":"20 1","pages":"1"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752798/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes and Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12263-024-00761-6","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: One-carbon metabolism links folate and methionine metabolism and this is essential for nucleotide synthesis in the cells. Alterations in one-carbon metabolism are associated with cardiovascular disease (CVD), type 2 diabetes and cancer. Our aim was to investigate whether SNPs in antioxidant-enzyme genes impact the concentrations of folate in serum (s-folate), plasma total homocysteine (p-tHcy) and total glutathione in plasma (p-tGSH) in healthy subjects after supplementation with folic acid.
Methods: In a randomized, double blind, crossover study, healthy subjects received 0.8 mg folic acid per day or a placebo for two weeks. Twenty-four male, and sixty-seven female subjects participated in this study. Participants were aged 36.4 ± 14.8 years (mean ± SD). We studied SNPs in six genes by PCR methods. The concentrations of s-folate, p-tHcy and p-tGSH were measured in fasting samples with Cobas and an HPLC-fluorescence method. Student T-tests and ANOVA were used for the statistical calculations.
Main findings: The subjects with SNP (rs4880) in superoxide dismutase (SOD2) gene (CC) allele had higher concentrations of s-folate and lower concentrations of p-tHcy than subjects with (CT + TT) alleles, (p = 0.014 and p = 0.012). Contrary to SOD2 (CC) allele, the subjects with SNP (rs1001179) catalase (CAT) CC allele had lower concentrations of s-folate (p = 0.029), higher concentrations of p-tGSH (0.017) and higher concentrations of p-tHcy before and after folic acid supplementations (p = 0.015, p = 0.017) than the subjects with (CT + TT) allele. Glutathione transferase (theta)1 (GST-T1) genotype was associated with higher concentrations of s-folate than GST-T0 before (p = 0.025) and after folic acid supplementation (p = 0.047). SNP (rs1050450) in glutathione peroxidase (GPX1) had also impact on the concentrations of p-tGSH (p = 0.011) in healthy subjects.
Conclusion: SNPs in SOD2 (rs4880), CAT (rs1001179), and GST1 impact the concentrations of s-folate, and p-tHcy in healthy subjects before and after folic acid supplementation. Our findings suggest that SNPs in antioxidant-genes have a role in health and disease by impacting the concentrations of s-folate, p-tHcy and p-tGSH.
期刊介绍:
This journal examines the relationship between genetics and nutrition, with the ultimate goal of improving human health. It publishes original research articles and review articles on preclinical research data coming largely from animal, cell culture and other experimental models as well as critical evaluations of human experimental data to help deliver products with medically proven use.