{"title":"Training method and difficulty modulate electrophysiological correlates of visual perceptual learning.","authors":"Di Wu, Pan Zhang, Shengdong Ye, Na Liu","doi":"10.1016/j.bandc.2025.106270","DOIUrl":null,"url":null,"abstract":"<p><p>The present study focused on the influence of training methods and task difficulty on event-related potentials (ERPs) at early and later visual perceptual learning (VPL) on a coherent motion identification task. Sixty participants were randomly divided into four groups for training with an adaptive stimulus (staircase group) and three constant stimuli (moderate, easy and difficult intensity groups). Visual performance improved in the staircase and moderate training groups but not in the easy or difficult training groups. ERP results revealed a decreased P1 amplitude in all groups. Additionally, staircase training increased the frontal P2 amplitude; accordingly, moderate constant stimulus training reduced the frontal P2 amplitude and increased the frontal N2 amplitude. Importantly, the change in frontal P2 amplitude was correlated with improved performance, indicating the involvement of cortices responsible for higher-order cognitive processes in VPL. Additionally, the difference in frontal P2 amplitude changes suggests the modulation of training methods (adaptive and consistent) on the role of attention in VPL. Furthermore, although behavior changes were not observed, the brains in the easy and difficult groups still presented different ERP changes. In summary, the results provide electrophysiological evidence for the modulation of training methods and task difficulty in VPL-related neuroplasticity.</p>","PeriodicalId":55331,"journal":{"name":"Brain and Cognition","volume":"184 ","pages":"106270"},"PeriodicalIF":2.2000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Cognition","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1016/j.bandc.2025.106270","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The present study focused on the influence of training methods and task difficulty on event-related potentials (ERPs) at early and later visual perceptual learning (VPL) on a coherent motion identification task. Sixty participants were randomly divided into four groups for training with an adaptive stimulus (staircase group) and three constant stimuli (moderate, easy and difficult intensity groups). Visual performance improved in the staircase and moderate training groups but not in the easy or difficult training groups. ERP results revealed a decreased P1 amplitude in all groups. Additionally, staircase training increased the frontal P2 amplitude; accordingly, moderate constant stimulus training reduced the frontal P2 amplitude and increased the frontal N2 amplitude. Importantly, the change in frontal P2 amplitude was correlated with improved performance, indicating the involvement of cortices responsible for higher-order cognitive processes in VPL. Additionally, the difference in frontal P2 amplitude changes suggests the modulation of training methods (adaptive and consistent) on the role of attention in VPL. Furthermore, although behavior changes were not observed, the brains in the easy and difficult groups still presented different ERP changes. In summary, the results provide electrophysiological evidence for the modulation of training methods and task difficulty in VPL-related neuroplasticity.
期刊介绍:
Brain and Cognition is a forum for the integration of the neurosciences and cognitive sciences. B&C publishes peer-reviewed research articles, theoretical papers, case histories that address important theoretical issues, and historical articles into the interaction between cognitive function and brain processes. The focus is on rigorous studies of an empirical or theoretical nature and which make an original contribution to our knowledge about the involvement of the nervous system in cognition. Coverage includes, but is not limited to memory, learning, emotion, perception, movement, music or praxis in relationship to brain structure or function. Published articles will typically address issues relating some aspect of cognitive function to its neurological substrates with clear theoretical import, formulating new hypotheses or refuting previously established hypotheses. Clinical papers are welcome if they raise issues of theoretical importance or concern and shed light on the interaction between brain function and cognitive function. We welcome review articles that clearly contribute a new perspective or integration, beyond summarizing the literature in the field; authors of review articles should make explicit where the contribution lies. We also welcome proposals for special issues on aspects of the relation between cognition and the structure and function of the nervous system. Such proposals can be made directly to the Editor-in-Chief from individuals interested in being guest editors for such collections.