Arteriolar Elasticity Measurement in the Fingertip Based on Photoplethysmographic Volume-Oscillometry: A New Approach to the Assessment of Vasomotor Functions in the Microvasculature.

IF 1.6 4区 医学 Q3 CARDIAC & CARDIOVASCULAR SYSTEMS
Ken-Ichi Yamakoshi, Peter Rolfe, Takehiro Yamakoshi
{"title":"Arteriolar Elasticity Measurement in the Fingertip Based on Photoplethysmographic Volume-Oscillometry: A New Approach to the Assessment of Vasomotor Functions in the Microvasculature.","authors":"Ken-Ichi Yamakoshi, Peter Rolfe, Takehiro Yamakoshi","doi":"10.1007/s13239-025-00772-3","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment. This paper describes a new approach to the assessment of vasomotor functions using the arteriolar elasticity measurement technique in the fingertip.</p><p><strong>Methods: </strong>A recently developed device, modified to detect a photoplethysmogram with green light (gPPG) in arteriolar regions, allowed the measurement of arteriolar blood pressure (BP<sub>ca.</sub>) and gPPG from a left index fingertip placed on an occlusive cuff of the device. Arteriolar stiffness and distensibility were analyzed as effective elasticity indices, as a function of arteriolar distending pressure derived by volume-oscillometry. Cold pressor tests to induce vasoconstriction were carried out whether appropriate elasticity changes could be obtained.</p><p><strong>Results: </strong>Experiments using 6 healthy subjects were successfully made to obtain arteriolar elastic properties before and while immersing a right hand in cold water. The index-values of stiffness and distensibility showed, respectively, a considerable increase and decrease, clearly demonstrating the appropriate elasticity changes with vasoconstrictive reactions.</p><p><strong>Conclusion: </strong>Although a further study using many subjects is needed, the results so far suggest that this method could easily provide important features to acquire quantitatively arteriolar elasticity together with BP<sub>ca.</sub> and to assess vasomotor functions in the microvasculature. This convenient method appears useful for clinical practices and health management and promising also for screening cardiovascular-related diseases. (242/250 words).</p>","PeriodicalId":54322,"journal":{"name":"Cardiovascular Engineering and Technology","volume":" ","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cardiovascular Engineering and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13239-025-00772-3","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment. This paper describes a new approach to the assessment of vasomotor functions using the arteriolar elasticity measurement technique in the fingertip.

Methods: A recently developed device, modified to detect a photoplethysmogram with green light (gPPG) in arteriolar regions, allowed the measurement of arteriolar blood pressure (BPca.) and gPPG from a left index fingertip placed on an occlusive cuff of the device. Arteriolar stiffness and distensibility were analyzed as effective elasticity indices, as a function of arteriolar distending pressure derived by volume-oscillometry. Cold pressor tests to induce vasoconstriction were carried out whether appropriate elasticity changes could be obtained.

Results: Experiments using 6 healthy subjects were successfully made to obtain arteriolar elastic properties before and while immersing a right hand in cold water. The index-values of stiffness and distensibility showed, respectively, a considerable increase and decrease, clearly demonstrating the appropriate elasticity changes with vasoconstrictive reactions.

Conclusion: Although a further study using many subjects is needed, the results so far suggest that this method could easily provide important features to acquire quantitatively arteriolar elasticity together with BPca. and to assess vasomotor functions in the microvasculature. This convenient method appears useful for clinical practices and health management and promising also for screening cardiovascular-related diseases. (242/250 words).

基于光电容积振荡法的指尖动脉弹性测量:一种评估微血管血管运动功能的新方法。
目的:小动脉平滑肌引起的血管舒缩反应功能障碍可引起严重的不良事件,如血流动力学一致性丧失。这反过来又会增加患心血管相关疾病的风险。因此,微血管疾病的无创定量评估对于早期诊断和治疗非常重要。本文介绍了一种利用指尖小动脉弹性测量技术评估血管舒缩功能的新方法。方法:最近开发的一种设备,改进后可以检测小动脉区域的绿光光容积图(gPPG),可以测量小动脉血压(BPca)和gPPG,从放置在设备的封闭袖带上的左食指。分析了小动脉刚度和扩张率作为有效弹性指标,是由体积振荡法得出的小动脉扩张压力的函数。进行冷压试验诱导血管收缩,观察是否能获得适当的弹性变化。结果:6名健康受试者成功进行了右手浸入冷水前后动脉弹性特性的实验。刚度指标值和膨胀性指标值分别有较大的增加和减少,清楚地表明随着血管收缩反应,弹性发生了适当的变化。结论:虽然需要更多的研究对象,但目前的结果表明,该方法可以很容易地与BPca一起提供定量获得小动脉弹性的重要特征。并评估微血管的血管舒缩功能。这种简便的方法对临床实践和健康管理有用,也有望用于筛查心血管相关疾病。(242/250的话)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Cardiovascular Engineering and Technology
Cardiovascular Engineering and Technology Engineering-Biomedical Engineering
CiteScore
4.00
自引率
0.00%
发文量
51
期刊介绍: Cardiovascular Engineering and Technology is a journal publishing the spectrum of basic to translational research in all aspects of cardiovascular physiology and medical treatment. It is the forum for academic and industrial investigators to disseminate research that utilizes engineering principles and methods to advance fundamental knowledge and technological solutions related to the cardiovascular system. Manuscripts spanning from subcellular to systems level topics are invited, including but not limited to implantable medical devices, hemodynamics and tissue biomechanics, functional imaging, surgical devices, electrophysiology, tissue engineering and regenerative medicine, diagnostic instruments, transport and delivery of biologics, and sensors. In addition to manuscripts describing the original publication of research, manuscripts reviewing developments in these topics or their state-of-art are also invited.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信